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Abstract

Given the set of vertical pairs of matrices M ⊂ MN+n,N (C) keeping the subspace
Cd × {0} ⊂ CN invariant, we obtain the implicit form of a miniversal deformation
of a pair belonging to an open dense subset of M. We compute this deformation
explicitly when the pair is observable and the subspaceCd×{0} is marked. Moreover,
we obtain the dimension of the orbit, characterize the structurally stable vertical
pairs and study the effect of each deformation parameter.
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1 Introduction

This paper completes the study of versal deformations when square matrices or pairs
of matrices are considered, together with invariant subspaces. Versal deformations were
introduced by Arnold in [1] (see also [2]) to study the variations of the invariants of a
square matrix when its entries are perturbed. Thanks to a natural generalization contained
in [24], the same technique has been applied to other cases, such as perturbations of pairs
of matrices representing linear systems ([12], [13]).

Invariant subspaces play a key role both in square matrices (see [18]) and linear systems
(see [25]), where they are often called ”conditioned” invariant subspaces. The differentiable
structure of the set of invariant subspaces of a square matrix has been studied in [23] and
that of conditioned invariant subspaces of a pair in [16] and [17]. In the context of versal
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deformations, invariant subspaces arise in a natural way. For instance, in the Carlson
problem (that is, the possible Segre characteristic of a block-triangular nilpotent matrix
when diagonal blocks are prescribed), one asks for perturbations of the given matrix
preserving a prefixed invariant subspace. Also, in the miniversal deformation of a pair of
matrices in [12], the initial controllability subspace is preserved as invariant subspace of
the perturbed pairs.

Moreover, in [18] the ”interesting class” of the so-called marked subspaces, namely, the
invariant subspaces having a Jordan basis which can be extended to a Jordan basis of the
whole space, is introduced. For instance, in [6] one proves that the ”simplest” solutions of
the Carlson problem are marked, and any other appears in a neighborhood of the marked
ones. This notion was extended to pairs of matrices in [5] and used in [7] for the analogue
to the Carlson problem: again the marked solutions cover all the possibilities and are the
simplest realizations.

It seems natural to consider the situation when both a matrix and an invariant subspace
are involved and both or one of the elements of this couple is perturbed. So, in [10]
one describes a versal deformation of a couple composed of an endomorphism and an
invariant subspace when both are perturbed. More explicit constructions are possible
when only one of the elements is perturbed. Thus, in [15] one obtains the equations of a
versal deformation of an invariant subspace with regard to a fixed endomorphism, which
are explicitly solved in [8] for marked subspaces. On the other hand, in [9] one studies
the perturbation of a matrix preserving an invariant subspace, again mainly when it is
marked. In particular, as we have pointed out, this perturbation gives all the solutions of
the Carlson problem, and hence explicit realizations can be obtained (see [7]).

Analogously, one can consider the couple formed by a linear system and a conditioned
invariant subspace, in particular a marked one. The versal deformation of this subspace
(with regard to a fixed pair of matrices) is studied in [11] and [21] whereas here we complete
the cycle, tackling the perturbation of the linear system preserving a given conditioned
invariant subspace. We have already mentioned that this situation appears in [12]. Again
we focus our attention on the marked case, which as above, has interesting properties; for
instance ”minimal” observable perturbations of a non-observable pair are marked.

We obtain the equations of a miniversal deformation of a pair preserving a given con-
ditioned invariant subspace and solve them explicitly for two particular cases, obtaining
”minimal” solutions (that is, without repeated parameters). Firstly, when the preserved
conditioned invariant subspace is a supplementary of the unobservable one. Then one
obtains just the versal deformation of a pair in [12] which, in this sense, is generalized
here. In particular, this family contains marked observable perturbations of the initial
pair. In fact, as we have pointed out, some of the ”simplest” ones in order to the initial
pair becomes observable. They are just the second particular case which we solve explic-
itly (when the initial pair is nilpotent). Moreover, we remark a nice geometric fact: the
minimal miniversal deformation of each one of these second cases, is a subfamily of that
obtained for the initial pair; in other words, the miniversal deformation of each perturbed
pair is contained in that of the initial pair.
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Some applications are derived: computation of the dimension of the orbits, characteriza-
tion of structurally stable objects, study of bifurcations diagrams... In addition, the orbits
and the versal deformations here obtained are compared with those in [12], where the or-
dinary block similarity is considered: for a nilpotent BK-matrix, the results are the same
for both equivalence relations; for observable marked pairs of matrices, the miniversal
deformation in [12] is a strict subfamily of that here.

More specifically, we consider the set M⊂ MN+n,N(C) of pairs of matrices having Cd(≡
Cd × {0} ⊂ CN) as a conditioned invariant subspace (2.2). Two pairs of matrices will
be called equivalent if they are block-similar and the change of basis in the state space
CN induces an automorphism in Cd (2.5). Our aim is to study these equivalence classes
and their variations when the pair preserving Cd as conditioned invariant subspace is
perturbed, mainly when the subspace is marked (2.4).

If we fix a basis adapted to Cd ⊂ CN ⊂ CN+n, in (3.2) we prove that the elements of M
are those of the form

a =




A1 A3

FC1 A2

C1 C2




.

Then M can be differentially stratified by rank C1 (3.4) and the above equivalence classes
are the orbits under the action on it of a suitable group (3.6). This is the starting point
to apply Arnold’s techniques.

We restrict ourselves to the maximal stratum M∗, which is an open dense set in M (4.1).
Then the equations of a miniversal deformation are obtained in (4.2). We solve them
explicitly when a ∈ M∗ is a BK-matrix (4.3) or it is marked and observable (5.6), in
which case a quite simple canonical form is available (5.1). As an application we compute
the dimension of the orbits (6.1) and characterize the structurally stable pairs (6.3).

Moreover, a simpler miniversal deformation having a nicer pattern is derived (5.8). In
particular, it facilitates the study of the effect of each deformation parameter (section
(6.3)). In addition, this simplified pattern allows us to compare the versal deformation
obtained here with the one when block similarity is considered (section (6.4)).

The organization of this paper is as follows. In section (2), we summarize some pre-
requisites concerning conditioned invariant subspaces, marked subspaces... Section (3) is
devoted to the study of the differentiable structure of M as a stratified manifold. In sec-
tion (4), we obtain the equations of a miniversal deformation of a pair a ∈ M∗, which
are solved in section (5) when a ∈ M∗ is observable and marked, also obtaining a sec-
ond miniversal deformation without repeated parameters. Finally, in section (6) some
applications are derived.

We use the following notation. We write Mp,q(C) the set of complex matrices having p
rows and q columns. We denote by ‖A‖ the usual norm of the matrix A and consider
the usual hermitian product < A,B >= trace(AB∗), where B∗ means the conjugate-
transpose matrix of B. We denote by Bt the transpose matrix of B. If p = q, we simply
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write Mp(C), and Gl(p) will be the group of non-singular matrices in it.

2 Prerequisites

We will deal with matrices of the form




A

C


, or equivalently pairs of matrices (C,A) ∈

Mn,N(C) × MN(C), which will be simply denoted as a if no confusion is possible. Such
pairs can be reduced to the following form:

Theorem 2.1 [14] Given (C, A) ∈ Mn,N(C) × MN(C), there exist integers k1 ≥ k2 ≥
· · · ≥ kr > 0, k1 + · · · + kr = N called Brunovsky Kronecker indices (or simply BK-
indices) and a convenient basis called BK-basis in which the matrix of the pair, hereafter
called BK-canonical form, is

aBK =




N 0

0 J

E 0

0 0




,

where

(i) N = diag(N1, . . . , Nr), with Ni ∈ Mki
(C), 1 ≤ i ≤ r, a lower nilpotent block,

(ii) E = diag(E1, . . . , Er), with Ei =
(

0 · · · 0 1

)
∈ M1,ki

(C), 1 ≤ i ≤ r.

(iii) J is a Jordan matrix.

The block J does not appear if (C, A) is observable or, equivalently, if (At, Ct) is control-
lable.

Let us consider a subspace S ⊂ CN , dim S = d, and bases adapted to it, that is to say,
whose d first vectors form a basis of S. Then we will assume that the matrices A and C
are block-partitioned into

A =




A1 A3

A4 A2


 , C =

(
C1 C2

)
,

where A1 ∈ Md(C), C1 ∈ Mn,d(C).

Definition 2.2 [18] A subspace S ⊂ CN is (C,A)-invariant or conditioned invariant if
A(S ∩Ker C) ⊂ S. Equivalently (see 1.8.5 [4]), if there is a basis adapted to S such that
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the pair becomes




Ā

C̄


 =




A1 A3

0 A2

C1 C2




,

with A1 ∈ Md(C), C1 ∈ Mn,d(C), d = dim S. Then we identify S = Cd×{0}, and one says
that (C1, A1) is the restriction to S of the given pair (C, A).

Remark 2.3 In [20] and [22] an intrinsic geometric definition of the restriction of a pair
to a conditioned invariant subspace is presented. One can also consider the ”quotient map”
defined in {0}×CN−d and prove (see [4]) that it is an endomorphism (having matrix A2)
if and only if C2 = 0.

Generalizing the concept of a marked subspace with regard to an endomorphism, we say
that a (C, A)-invariant subspace is marked if there is some BK-basis of the restriction
which can be extended to a BK-basis of (C, A):

Definition 2.4 [5] Let S ⊂ CN be a (C, A)-invariant subspace. S is said to be (C,A)-
marked if there exists an adapted basis to S in which the matrix of the pair (C, A) has the
form




Ā

C̄


 =




A1 A3

0 A2

C
′
1 C

′
3

0 C
′
2




,

and

(i) (C
′
1, A1) is a BK-matrix.

(ii) (C̄, Ā) is a BK-matrix, except for permutations, that is, there exists a permutation
matrix P ∈ MN(C) such that (C̄P, P tĀP ) is a BK-matrix.

Then we say that (C̄, Ā) is a marked matrix (with regard to S).

When conditioned invariant subspaces are involved, the usual block similarity between
pairs of matrices is restricted in a natural way:

Definition 2.5 [21] Given two pairs of matrices (C, A), (C ′, A′) ∈ Mn,N(C) × MN(C)
having S = Cd × {0} ⊂ CN as a conditioned invariant subspace, we say that they are
S-equivalent (or simply equivalent if no confusion is possible) if

(i) The pairs are block-similar, that is, A′ = PAP−1 + RCP−1, C ′ = QCP−1,
where P ∈ Gl(N), Q ∈ Gl(n), R ∈ MN,n(C).

(ii) The change of basis P keeps S invariant.
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More explicitly,




A
′

C
′


 =




P1 P3 R1

0 P2 R2

0 0 Q







A1 A3

0 A2

C1 C2







P1 P3

0 P2




−1

=

=




P1A1P
−1
1 + R1C1P

−1
1 −(P1A1 + P3FC1 + R1C1)P

−1
1 P3P

−1
2 + (P1A3 + P3A2 + R1C2)P

−1
2

R2C1P
−1
1 −(P2FC1 + R2C1)P

−1
1 P3P

−1
2 + (P2A2 + R2C2)P

−1
2

QC1P
−1
1 −QC1P

−1
1 P3P

−1
2 + QC2P

−1
2




Conversely, bearing in mind that




I 0 0

0 I −R2Q
−1

0 0 I







A
′
1 A

′
3

A
′
4 A

′
2

C
′
1 C

′
2







I 0

0 I


 =




A
′
1 · · ·

0 · · ·
C
′
1 · · ·




,

we have:

Proposition 2.6 If S = Cd×{0} is a (C, A)-invariant subspace and (C ′, A′) is obtained
from (C,A) as above, then S is also (C ′, A′)-invariant and both restrictions, i.e. (C

′
1, A

′
1)

and (C1, A1), are block-similar. In particular, rank C1 = rank C
′
1.

Our aim is to study the equivalence classes in (2.5) and the variation of their equivalence
invariants (for example, the block similarity invariants of the pair (C, A) or those of its
restriction (C1, A1)) when the pair (C,A) is perturbed in such a way that S = Cd×{0} ⊂
CN is preserved as a conditioned invariant subspace, and mainly when it is marked.

We will use Arnold’s techniques of the so-called versal deformations (that is, canonical
forms of local differentiable families of perturbations). The starting point is the fact that
the corresponding equivalence classes are orbits under the action of a Lie group, and
hence they are submanifolds. Then versal/miniversal deformations can be obtained as
submanifolds which are transverse/minitransverse to the orbit.

Definition 2.7 Let M be a manifold. A deformation of a ∈M is a differentiable map

ϕ : Λ −→M,

where Λ is a neighborhood of the origin in Cl and ϕ(0) = a. The image ϕ(Λ) is said to be
a family of deformations of a ∈M.

If there is a Lie group G acting on the differentiable manifold M,

G ×M −→ M
(p, a) 7−→ p ∗ a,
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a deformation is called “versal” if any other deformation is induced from it in the following
sense:

Definition 2.8 Let M be a manifold and G a Lie group acting on it. A deformation of
a ∈M, ϕ : Λ −→M is called versal if, given any other deformation of a ∈M, ψ : Γ −→
M, there is a neighborhood of the origin Γ′ ⊂ Γ, a differentiable map ρ : Γ′ −→ Λ and a
deformation of the identity I ∈ G, δ : Γ′ −→ G such that

ψ(τ) = δ(τ) ∗ ϕ(ρ(τ)) , ∀τ ∈ Γ′.

It is called miniversal if it has the minimal dimension among the versal deformations.

Remark 2.9 It is enough to compute a miniversal deformation of a point of the orbit;
then, a miniversal deformation of any other point of the same orbit is induced from it by
means of the group action.

As in the Arnold case, the “closed orbit lemma ” ([24], p. 37) will ensure that the equiv-
alence classes (in fact, the orbits) are differentiable manifolds.

Proposition 2.10 If G is an algebraic group, for all a ∈M, the orbit Oa = {p∗a : p ∈ G}
under the action of G is a submanifold of M locally closed, where the boundary is the union
of orbits of strictly smaller dimension.

We now recall the key relation between “versality ” and “transversality ”.

Definition 2.11 Let N ⊂M be a submanifold of the manifold M and ϕ : Λ −→M be
a differentiable map. For 0 ∈ Λ, ϕ is said to be transverse to N in 0 if ϕ(0) ∈ N and the
tangent space to M at the point ϕ(0) verifies

Tϕ(0)M = Imdϕ0 + Tϕ(0)N .

ϕ(or L) is said to be minitransverse if the sum is a direct sum.

As pointed out above, the key point is the following proposition, proved in [1] for square
matrices, and which can be generalized (for example [24]) to the cases like the above one,
where the equivalence classes are submanifolds given as orbits under the action of a Lie
group.

Proposition 2.12 A deformation ϕ : Λ −→ M of a ∈ M is versal/miniversal if and
only if it is transverse/minitransverse to the orbit Oa at the origin 0 ∈ Λ.

Corollary 2.13 In the conditions of 2.8, if γ : Γ −→M, Γ ⊂ Cσ, is a local parameter-
ization of M with γ(ã) = a, and {e1, . . . , el} is a basis of a supplementary subspace of
Tã(γ

−1(Oa)) in Cσ, then a miniversal deformation of a ∈M is ϕ : Λ −→M defined by

ϕ(λ1, . . . , λl) = γ(ã + λ1e1 + · · ·+ λlel),

where Λ is small enough to assure ϕ(Λ) ⊂ Γ.
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Moreover, the codimension of Oa is l.

3 Pairs of matrices having a (C, A)-invariant fixed subspace

In this section, we characterize the elements of the set M formed by the pairs of matrices
having the subspace Cd × {0} ⊂ CN as a conditioned invariant. Moreover, we see that it
is a stratified manifold and finally we describe a Lie group that acts on M in such a way
that the orbits are just the equivalence classes in (2.5).

Definition 3.1 Let
M = {(C, A) ∈ MN+n(C)×MN(C) : A(S ∩Ker C) ⊂ S, S = Cd × {0} ⊂ CN} ,

Mr =








A1 A3

A4 A2

C1 C2



∈M : rank C1 = r



, M =

⋃
0≤r≤r∗Mr, where r∗ = min(d, n).

Now we characterize the pairs in M.

Proposition 3.2 A pair (C, A) ∈ MN+n(C) × MN(C) belongs to M if and only if its
d-block-partitioned form can be written, for some F ∈ MN−d,n(C), as




A

C


 =




A1 A3

FC1 A2

C1 C2




.

Proof.

If a ∈M, from definition 2.2 it holds that

A((Cd × {0}) ∩Ker C) ⊂ Cd × {0}. (∗)

The elements of (Cd×{0})∩Ker C have the form




x

0


 with C1x = 0. Thus, (∗) is verified

if and only if C1x = 0 implies A4x = 0, that is, Ker C1 ⊂ Ker A4. But this last condition
is equivalent to Im At

4 ⊂ Im Ct
1; or, equivalently, At

4 = Ct
1F

t for some F ∈ MN−d,n(C).

In order to study the differentiable structure of M, let us consider the set

N = {(DG,D) : D ∈ Md,n(C), G ∈ Mn,l(C)}.

In general, it is not a manifold. For example, {(xy, x) : x ∈ R, y ∈ R} = {(0, 0)}∪{(z, x) :
x 6= 0, z ∈ R}. Let us see that we can stratify N by means of rank D:
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Proposition 3.3 The set

Nr = {(DG,D) : D ∈ Md,n(C), G ∈ Mn,l(C), rank D = r}

is a manifold of dimension r(l + n + d− r).

Proof.

If D0 ∈ Md,n(C) with rank D0 = r, there exists an open set containing D0, UD0 ⊂ M r
d,n(C),

where M r
d,n(C) denotes the set of matrices of Md,n(C) with rank r which from [3] is a

manifold of dimension dn − (d − r)(n − r). Take 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ d such that
the rows dij = (dij ,1, dij ,2, . . . , dij ,n) j = 1, 2, . . . , r of D determine a basis D of Im Dt for
D ∈ UD0 (shrinking it if necessary).

Let Π : Cn −→ Im Dt be the orthogonal projection onto Im Dt = (ker D)⊥. If we denote
by gi the i column of the matrix G, KD = (dt

i1
, . . . , dt

ir) ∈ Mn,r(C) and J ∈ Mr,l(C) is the
matrix where the i column is formed by the components of Π(gi) in the basis D of Im Dt,
it is obvious that

DG = D(Π(g1), . . . , Π0(g
l)) = DKDJ for D ∈ UD0 . (*)

We consider the map

ϕ : Mr,l(C)× UD0 −→ Nr, ϕ(J,D) = (DKDJ,D) = (DG, D).

This map ϕ is C∞ because the elements of DKDJ are polynomials of the elements of J
and D, it is injective because the rank of DKD = (< di, dij >)i,j is r, and (*) implies that
Im ϕ = {(DG,D) : D ∈ UD0 , G ∈ Mn,l(C)}.
Moreover, dϕ(J,D) is injective because dϕ(J,D)(J̇ , Ḋ) = (ḊKDJ +DK̇DJ +DKDJ̇ , Ḋ) = 0

implies Ḋ = 0, K̇D = 0 (K̇D is a submatrix of Ḋ) and J̇ = 0. In brief, ϕ and its inverse
ϕ−1 defined in Im ϕ are C∞.

Finally, we prove that if UD1 is another open neighborhood of the same kind verifying
UD1 ∩ UD0 6= ∅ and the restriction of the corresponding maps ϕ and ψ on Mr,l(C) ×
(UD1 ∩ UD0), respectively, is considered, then the composition ψ−1 ◦ ϕ is differentiable. If
we denote the matrices KD corresponding to ϕ and ψ by K0

D and K1
D, respectively, we

have K0
D = K1

DS with S an invertible matrix because it is the matrix of a change of basis
in Im Dt. Hence,

(ψ−1 ◦ ϕ)(J,D) = ψ−1(DK0
DJ,D) = ψ−1(DK1

DSJ,D) = (SJ,D).

Then, the pairs (ϕ,Mr,l(C)×UD0) are a coordinate system and provide Nr with a manifold
structure of dimension r(l + n + d− r).

Therefore, M =
⋃

rMr is a stratified differentiable manifold:
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Theorem 3.4 With the notation in 3.1, Mr is a manifold of dimension

σr = d2 + (N − d)(N + n) + r(N + n− r).

In fact, a local parameterization is

γ : Md(C)×MN−d(C)×Md,N−d(C)× UC1 ×Mn,N−d(C)×Mr,N−d(C) −→Mr

γ(A1, A2, A3, C1, C2, J) =




A1 A3

JKt
Ct

1
C1 A2

C1 C2




.

Notation 3.5 From now on we will indicate the coordinates of any a ∈Mr by ã; namely

ã = γ−1(a) = (A1, A2, A3, C1, C2, J) ∈ Cσr .

Following (2.5), we restrict toM in a natural way the usual change of basis in the manifold
MN+n,N(C). Now the chain of subspaces Cd×{0} ⊂ CN×{0} ⊂ CN+n must be preserved,
so we consider:

Definition 3.6 Let G ⊂ Gl(N + n) be defined by

G =



p =




P1 P3 R1

0 P2 R2

0 0 Q



∈ Gl(N + n), P1 ∈ Gl(d), P2 ∈ Gl(N − d), Q ∈ Gl(n)



.

It is a straightforward computation that G is a subgroup of Gl(N + n) and that:

Proposition 3.7 The natural action of the subgroup G ⊂ Gl(N +n) on the differentiable
manifold MN+n,N(C) can be restricted to Mr:

G ×Mr −→Mr, (p, a) 7−→ p ∗ a;

that is,

p ∗ a =




P1 P3 R1

0 P2 R2

0 0 Q







A1 A3

FC1 A2

C1 C2







P1 P3

0 P2




−1

∈Mr.

Proposition (2.6) shows that:

Proposition 3.8 If we denote by Oa the orbit of a ∈Mr under the action of G, then Oa

is the class of a with regard to the equivalence relation in (2.5).
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4 Miniversal deformation preserving a (C,A)-invariant subspace

We restrict ourselves to the stratum of M where the rank of C1 is maximal:

M∗ = {a ∈M : rank C1 = r∗},

where r∗ = min(d, n). Note that, in fact, this is the generic situation:

Proposition 4.1 M∗ is an open dense subset in M.

Proof.

It is obvious that M∗ is an open set. To prove the second property, it is sufficient to point
out that for any C1 and ε > 0 there is C

′
1, with rank C1 = r∗, such that ‖C ′

1 − C1‖ < ε,
and hence

‖




A1 A3

FC
′
1 A2

C
′
1 C2



−




A1 A3

FC1 A2

C1 C2



‖ ≤ ‖FC

′
1 − FC1‖+ ‖C ′

1 − C1‖ < ε(1 + ‖F‖).

Thus, we have our first main result:

Theorem 4.2 Let a ∈M∗ with ã = (A1, A2, A3, C1, C2, 0) ∈ Cσ.
A miniversal deformation of this point in M is given by the set of matrices




A1 + X1 A3 + X3

Z(C1 + Y1) A2 + X2

C1 + Y1 C2 + Y2




satisfying the conditions

(1) X2C
∗
2 + Z = 0,

(2) Y1C
∗
1 + Y2C

∗
2 = 0,

(3) X1C
∗
1 + X3C

∗
2 = 0,

(4) X3A
∗
2 − A∗

1X3 − C∗
1Y2 = 0,

(5) X1A
∗
1 + X3A

∗
3 − A∗

1X1 − C∗
1Y1 = 0,

(6) X2A
∗
2 − A∗

3X3 − A∗
2X2 − C∗

2Y2 = 0.

Proof.

Let V ⊂M∗ a small enough neighborhood of a in the linear variety defined by (1)− . . .−
(6). It is sufficient to prove that V is minitransversal to Oa at a or, equivalently, that
γ−1(V ) is minitransversal to γ−1(Oa) at ã.

Notice that in the proof of (3.3), if D has maximal rank, then DG 6= 0 if G 6= 0. Therefore,
for the maximal stratum M∗, the parameterization in (3.4) can be simplified taking

11



UC1 ⊂ Mn,d(C) and

γ : Cσ −→M∗, σ = d2 + (N − d)(N + n) + r∗(N + n− r∗)

γ(A1, A2, A3, C1, C2, F ) =




A1 A3

FC1 A2

C1 C2




.

If we consider the G-action in Cσ induced in a natural way by (3.7), it is a straightforward
computation that

p∗ã = (P1A1P
−1
1 +P3FC1P

−1
1 +R1C1P

−1
1 ,−(P2FC1+R2C1)P

−1
1 P3P

−1
2 +(P2A2+R2C2)P

−1
2 ,

−(P1A1 + P3FC1 + R1C1)P
−1
1 P3P

−1
2 + (P1A3 + P3A2 + R1C2)P

−1
2 , QC1P

−1
1 ,

−QC1P
−1
1 P3P

−1
2 + QC2P

−1
2 , P2FQ−1 + R2Q

−1).

Hence γ−1(Oa) = Oã = {p ∗ ã, p ∈ G}. To conclude the theorem let us see that γ−1(V ) is,
locally, just the normal variety ã + (TãOã)

⊥, where TãOã is the tangent space to Oã at ã.
Clearly, this tangent space is Im dαI , where dαI is the derivative at the identity I ∈ G of
the map α : G −→ Cσ, α(p) = p ∗ ã. Deriving this map we have:

dαI(ṗ) = (Ṗ1A1−A1Ṗ1+Ṙ1C1, Ṗ2A2+Ṙ2C2−A2Ṗ2,−A1Ṗ3+Ṗ1A3+Ṗ3A2+Ṙ1C2−A3Ṗ2,

Q̇C1 − C1Ṗ1,−C1Ṗ3 + Q̇C2 − C2Ṗ2, Ṙ2)

for any ṗ belonging to TIG, that is, for Ṗ1 ∈ Md(C), Ṗ2 ∈ MN−d(C), Ṗ3 ∈ Md,N−d(C), Ṙ1 ∈
Md,n(C), Ṙ2 ∈ MN−d,n(C), Q̇ ∈ Mn(C).

Then, x̃ = (X1, X2, X3, Y1, Y2, Z) ∈ (TãOã)
⊥ if and only if, for any Ṗ1, Ṗ2, Ṗ3, Ṙ1, Ṙ2, Q̇ as

above,

trace(X∗
1 (Ṗ1A1 − A1Ṗ1 + Ṙ1C1)) + trace(X∗

2 (Ṗ2A2 + Ṙ2C2 − A2Ṗ2))+

+ trace(X∗
3 (−A1Ṗ3 + Ṗ1A3 + Ṗ3A2 + Ṙ1C2 − A3Ṗ2)) + trace(Y ∗

1 (Q̇C1 − C1Ṗ1))+

+ trace(Y ∗
2 (−C1Ṗ3 + Q̇C2 − C2Ṗ2)) + trace(Z∗Ṙ2) = 0

or, equivalently,

trace(X1A
∗
1 + X3A

∗
3 − A∗

1X1 − C∗
1Y1)Ṗ

∗
1 + trace(X3A

∗
2 − A∗

1X3 − C∗
1Y2)Ṗ

∗
3 +

+ trace(X1C
∗
1 + X3C

∗
2)Ṙ∗

1 + trace(X2A
∗
2 − A∗

3X3 − A∗
2X2 − C∗

2Y2)Ṗ
∗
2 +

+ trace(X2C
∗
2 + Z)R∗

2 + trace(Y1C
∗
1 + Y2C

∗
2)Q̇∗ = 0.

Hence, x̃ ∈ (TãOã)
⊥ if and only if (1)− . . .− (6) are verified.

In the particular case when A3 = 0 and C2 = 0, then the equations in Theorem 4.2 become
just those obtained in [12] with regard to the general block similarity. Hence, we have:
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Corollary 4.3 Let us consider the particular case of a BK-matrix aBK ∈ M∗ and S =
Cd × {0} a supplementary of the unobservable subspace. Then, a miniversal deformation
of aBK is




N 0

0 J

E 0




+




0 XFRW
3

0 XEND
2

Y OBS
1 0




,

where

(i) The deformation parameters in the i-row of Y OBS
1 (2 ≤ i ≤ r) are placed in the first

(i− 1) blocks as follows: ki + 1, . . . , k1− 1; . . . ; k1 + . . . + kj−1 + ki + 1, . . . , k1 + . . . +
kj − 1; . . . ; k1 + . . . + ki−2 + ki + 1, . . . , k1 + . . . + ki−1 − 1. (Notice that there are no
parameters in the j-block if kj ≤ ki + 1.)

(ii) The deformation parameters in XEND
2 are those of the miniversal deformation of the

square matrix J in [1].
(iii) The deformation parameters in XFRW

3 are just the entries of the rows: 1, k1 +1, k1 +
k2 + 1, . . . , k1 + k2 + . . . + kr−1 + 1.

Example 4.4 For a BK-matrix with BK-indices (3, 3, 2, 1) and J a nilpotent matrix with
Segre characteristic (1, 4, 2), we have

*

1
1

1
1

1
*

*

1
1

1

1
1

1
1

1

* * * * * *

* * * * * * *

* * * * * *

* * * * *

* * *

* * * * * * *

* * * * *

* *

*

Remark 4.5 The above corollary shows that Theorem (4.2) generalizes the results in [12]
when the preserved conditioned invariant subspace is not necessarily a supplementary of
the unobservable one. In this sense, the notations Y OBS

1 and XEND
2 point out that the

particular cases of an observable pair and a square matrix are included, with d = N and
d = 0, respectively.
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5 Miniversal deformation of observable marked matrices

As pointed out in the introduction, we will solve the equations in theorem (4.2) explicitly
in those cases where a ∈ M∗ is an observable marked (see definition (2.4)) matrix (then
r∗ = n). It can be easily observed (see [5] for further explanation) that if a ∈ M∗ is
observable, a ∈ M∗ is marked if and only if there exists a matrix ac ∈ Oa of the form
described in the following definition which we will call its canonical form.

Definition 5.1 Let

a =




A1 A3

0 A2

C1 0



∈M∗

be an observable marked matrix with q = (q1, . . . , qn) and p = (p1, . . . , pn) being the BK-
indices of the pairs (C1, A1) and (C, A), respectively, verifying q1 ≥ q2 ≥ · · · ≥ qn, pi ≥ qi,
q1 + · · ·+ qn = d, p1 + · · ·+ pn = N , and let us define δi = pi− qi. Notice that (p1, . . . , pn)
are not necessarily in non increasing order.

(i) We say that a is in canonical form (and then we write ac) if

(1) (C1, A1) is a Brunovsky pair.
(2) A2 = diag(Nδ1 , . . . , Nδn) ∈ MN−d(C), where only δi 6= 0 are considered.
(3) A3 = (A3,i,j)1≤i,j≤n, A3 ∈ Md,N−d(C), A3,i,j ∈ Mqi,δj

(C)

A3,i,i =




eδi

0


 if 1 ≤ i ≤ m, A3,i,j = 0 otherwise, where only δi 6= 0 are

considered, and then eδi
will be a row matrix of zeros and one 1 in the position δi

with the size corresponding to the context.
(ii) We say that all the matrices equivalent to the preceding one are of type (q, p).

Example 5.2 The following matrix is an observable marked matrix in canonical form of
type ((3, 3, 2, 1), (4, 3, 6, 3)):
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1
1

1

1
1

1
1

1

1
1

1

1
1

1
1

1

Remark 5.3 Notice that the matrices in (5.1) appear in the miniversal deformation in
(4.3) when J is nilpotent. For instance, the one in (5.2) appears in the miniversal defor-
mation in (4.4). In general, they are perturbations making aBK observable, with Y OBS

1 = 0
and XEND

2 = 0. In fact, it can be seen that, somehow, they are ”minimal” observable de-
formations of aBK, that is to say, pairs in (4.3) having a minimal number of non-zero
deformation parameters to be observable.

When we solve the set of equations in theorem (4.2), the following special types of Toeplitz
matrices often appear:

Definition 5.4 (1) We say that a matrix X = (xi,j) ∈ Mγ,β(C) is a T-matrix if it is a
Toeplitz matrix; that is, if it is constant along the diagonals.

(2) If X is a T-matrix such that xi,1 = 0 if i > 1, we say that X is an UT-matrix (upper
Toeplitz matrix).

(3) We say that a block matrix X =
[
Xi,j

]

1≤i≤r,1≤j≤s
, Xi,j ∈ Mγi,βj

(C) is a block

T-matrix if each block Xi,j is a T-matrix. We define a block UT-matrix analogously.

We now solve equations (1) − . . . − (6) in Theorem (4.2) when the matrix ac ∈ M∗

is an observable marked matrix in canonical form. The following theorem describes the
corresponding solutions:

Theorem 5.5 (First Miniversal Deformation) Let ac ∈M∗ be an observable marked
matrix in canonical form of type (q, p) as in (5.1).

Then, a miniversal deformation of ac ∈M∗ is given by the set of matrices

ac +




X1 X3

0 X2

Y1 Y2




such that
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(2’) (Y1,h,k)qk
= 0,

(3’) (X1,h,k)qk
= 0,

(4’)




X3,h,k

Y2,h,k


 UT-matrix,

(5’)




(X3,h,k)δk
X1,h,k

0 Y1,h,k


 T -matrix if δk > 0,




X1,h,k

Y1,h,k


 UT -matrix if δk = 0,

(6’)




X2,h,k

(X3,h,k)
1


 UT-matrix provided that δh > 0 and δk > 0,

where (·)ν, (·)ν mean, respectively, the ν column/row of (·).
Proof.

We will denote by (·)ν̂ and (·)ν̂ the matrix (·) from which the ν column/row, respectively,
has been removed.

Solving each equation in (4.2), we have:

(1) X2C
∗
2 + Z = 0

Using that C2 = 0 ( from definition (5.1)), it turns out that Z = 0.
(2) Y1C

∗
1 + Y2C

∗
2 = 0

Also using that C2 = 0 and the decomposition into blocks of the matrices, we have

0 =
m∑

i=1

Y1,h,iC
∗
1,k,i , 1 ≤ h, k ≤ n

and using the form of the blocks of C1, we obtain 0 = Y1,h,kC
∗
1,k,k ,. Finally, using the

introduced notation, this equation is equivalent (Y1,h,k)qk
= 0.

(3) X1C
∗
1 + X3C

∗
2 = 0

This equation is the same as (2), but the matrices involved are now X1 ∈ Md(C),
X3 ∈ Md,N−d(C).

(4) X3A
∗
2 − A∗

1X3 − C∗
1Y2 = 0

Using the decomposition into blocks of the matrices, we have

n∑

i=1

X3,h,iA
∗
2,k,i −

m∑

j=1

A∗
1,j,hX3,j,k −

n∑

`=1

C∗
1,`,hY2,`,k = 0 , 1 ≤ h, k ≤ n.

Considering the form of the matrices A1, A2 and C1, we have X3,h,kN
∗
δk
−N∗

qk
X3,h,k−

e∗qh
Y2,h,k = 0 ; and using the above notation, we obtain

[
0 (X3,h,k)δ̂k

]
=




(X3,h,k)
1̂

Y2,h,k


 ,

which is equivalent to (4’).
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(5) X1A
∗
1 + X3A

∗
3 − A∗

1X1 − C∗
1Y1 = 0

Using the decomposition into blocks, the last equation is equal to

m∑

i=1

X1,h,iA
∗
1,k,i +

n∑

i=1

X3,h,iA
∗
3,k,i =

m∑

i=1

A∗
1,i,hX1,i,k +

n∑

i=1

C∗
1,i,hY1,i,k , 1 ≤ h, k ≤ n.

Considering the form of the matrices, we distinguish two cases:

(a) If δk > 0, X1,h,kN
∗
qk

+ X3,h,k




eδk

0




∗

= N∗
qh

X1,h,k + e∗qh
Y1,h,k .

Using the above notation, we have
[
(X3,h,k)δk

, (X1,h,k)q̂k

]
=




(X1,h,k)
1̂

Y1,h,k


 , which

is equivalent to (5’).

(b) If δk = 0, X1,h,kN
∗
qk

= N∗
qh

X1,h,k + e∗qh
Y1,h,k .

Using the above notation, we have
[
0, (X1,h,k)q̂k

]
=




(X1,h,k)
1̂

Y1,h,k


 . Therefore, the

solution for this case is equivalent to considering (X3,h,k)δk
= 0 in the general

case, and this gives us (5’).
(6) X2A

∗
2 − A∗

3X3 − A∗
2X2 − C∗

2Y2 = 0
Using the decomposition into blocks of the matrices and that C2 = 0, we have

n∑

i=1

X2,h,iA
∗
2,k,i −

m∑

i=1

A∗
3,i,hX3,i,k −

n∑

i=1

A∗
2,i,hX2,i,k = 0 , 1 ≤ h, k ≤ n, δh > 0, δk > 0.

Considering the form of the matrices, we have X2,h,kN
∗
δk
−A∗

3,h,hX3,h,k−N∗
δh

X2,h,k =

0 . This equation is equivalent to
[
0, (X2,h,k)δ̂k

]
=




(X2,h,k)
1̂

(X3,h,k)
1


 , and we obtain (6’).

Example 5.6 Given the observable marked matrix in canonical form of type
((3, 3, 2, 1), (4, 3, 6, 3)) in example (5.2), its miniversal deformation given by theorem (5.5)
is
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1

1

1
1

1
1

1
1

1
1

1

1
1

1
1

1

t5
t5

t5

t1 t2 t3 t4
t5

t3 t4
t3 t4

t5

t1 t2 t4 t3

t7 t6

t6
t6

t6

t7
t7

t7

where all the parameters appear along the indicated diagonals and ti are the parameters
appearing in more than one block in X1, X2, X3, Y1, Y2.

As an application we will compute codim Oac in (6.1). In fact, we use it to derive a new
miniversal deformation of ac ∈ M∗ without repeated parameters, which will be more
useful to study the effect of each parameter. We construct it by taking an appropriate
basis of a suitable supplementary subspace of TãcOãc .

Definition 5.7 Let ac ∈ M∗ be an observable marked matrix in canonical form (see
definition (5.1)). We define the elements ai

2hk, ai
3hk and ci

1hk in Cσ having the same block
sizes as in ãc ∈M∗, and all the entries 0 except one 1 placed in the first row of the block
A2hk, A3hk or C1hk, respectively, and in their i-column.

Let Sa be the vector space spanned by the matrices ai
2hk, aj

3hk and cl
1hk, where 1 ≤ h, k ≤ n,

δk − δh < i ≤ δk, qh < l ≤ qk − 1, and the index j vary as follows:
if δh > 0, ph−qh < j ≤ δk−qh, and max(0, ph−δk)+δk−qh < j ≤ min(qh, qk−1)+δk−qh;
if δh = 0, 0 < j ≤ min(qk − 1, pk − qh − 1, δk) + δk − qh.

Theorem 5.8 (Second Miniversal Deformation) Let ac ∈ M∗ be an observable
marked matrix in canonical form of type (q, p) as in (5.1). Then, a miniversal defor-
mation of ac ∈ M∗ is given by the subvariety parameterized by ãc + Sac. More explicitly,
it is given by the set of matrices

ac +




0 X
′
3

0 X
′
2

Y
′
1 0




,

where, with the notation in (4.3), Y
′
1 = Y OBS

1 , X
′
2 = XEND

2 and X
′
3 is a subfamily of

XFRW
3 .

Proof.
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By construction, the set of matrices {ai
2hk, a

j
3hk, c

l
1hk}h,k,i,j,l is linearly independent, and

therefore the dimension of the subspace Sa spanned by them is the dimension of the
orthogonal of TãOã, in accordance with corollary (6.1). We will see that Sa is a supple-
mentary subspace of TãOã by proving that its intersection is the null space. In order to
do so, we will prove that for every non null vector of Sa, there is a vector of (TãOã)

⊥ such
that their product is not zero.

Notice that if x̃ = (X1, X2, X3, Y1, Y2, Z) ∈ Cσ, we then have < x̃, ai
2hk >= (X2hk)1,i,

< x̃, aj
3hk >= (X3hk)1,j, < x̃, cl

1hk >= (Y1hk)l. Now let v =
∑

h,k,i

xi
2hka

i
2hk +

∑

h,k,j

xj
3hka

j
3hk +

∑

h,k,l

yl
1hkc

l
1hk, where xi

2hk, x
j
3hk, y

l
1hk ∈ C, be a vector of Sa. We consider the vector

x̃ = (X1, X2, X3, Y1, Y2, Z) ∈ (TãOã)
⊥ defined by (X2hk)1,i = xi

2hk,(X3hk)j = xj
3hk,(Y1hk)l =

yl
1hk, where the indices vary as in (5.7). Then, < v, x̃ >=

∑

h,k,i

|xi
2hk|2 +

∑

h,k,j

|xj
3hk|2 +

∑

h,k,l

|yl
1hk|2 , and this implies that < v, x̃ >= 0 if and only if v = 0.

Example 5.9 The new miniversal deformation in example (5.6) is

* *

*

*

*

*

1

* * ****

* **

t2

1

1
1

1

1
1

1
1

1

1

1
1

1

1
1

t1

t4t3

t5

t6 t7

6 Applications

6.1 Dimension of the orbit

As an application of theorem (5.5), we obtain the dimension of Oac .

Corollary 6.1 Let ac ∈ M∗ be an observable marked matrix in canonical form of type
(q, p) as in (5.1). Then, the codimension of its orbit is
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codim Oac =
∑

1≤h,k≤n
δh·δk>0

min(δh, δk) +
∑

1≤h,k≤n
δh·δk>0

max(0, min(qh, qk − 1)−max(0, ph − δk)) +

+
∑

1≤h,k≤n
δh·δk>0

max(0, δk − ph) +
∑

1≤h,k≤n

max(0, qk−qh−1) +

+
∑

1≤h,k≤n
δh=0

min(qk − 1, pk − qh − 1, δk) +
∑

1≤h,k≤n
δh=0

max(0, δk − qh).

Proof.

To count how many freedom degrees the miniversal deformation has, we study the number

of parameters appearing in the solution x =




X1 X3

0 X2

Y1 Y2




. The following figure is useful

because it shows all the nullity and constancy conditions of the diagonals appearing in
theorem (5.5):

* * · · · *
0
...
0

*
0...
0

0

X2,h,k

X3,h,k

Y2,h,k

* · · · *

0

...

...

0

0

X1,h,k

Y1,h,k

¾ -

¾ -

6

?

6

?

δk=pk−qk

qk

qh

δh=ph−qh

1

* · · · *

We denote by ∗ the origin of the diagonals that can be different from zero. The remaining
conditions of theorem (5.5) and the sizes of the blocks will allow us to obtain the actual
ones.

We distinguish three different cases depending on the number of blocks in the above figure:

(I) δh, δk > 0
In this case, all the blocks of the solution appear as the above figure shows. It can

be seen that there are four types of parameters:
(a) Those beginning and finishing in X2,h,k.
(b) Those beginning in X2,h,k and finishing in Y1,h,k.
(c) Those beginning in X2,h,k and finishing in Y2,h,k.
(d) Those beginning in X1,h,k and finishing in Y1,h,k.
Indeed, (X2,h,k)1,i = (X2,h,k)1−i+δk,δk

1 ≤ i ≤ δk . We distinguish the cases:
(a) If δk − δh < i ≤ δk.
(b) If 0 < i ≤ δk,δk < i + ph < pk, (X2,h,k)1,i = (Y1,h,k)i+ph

and i + δh ≤ δk because
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(Y1,h,k)qk
= 0.

(c) If ph < 1− i + δk, (X2,h,k)1,i = (Y2,h,k)i+ph
.

(d) (X1,h,k)1,j = (Y1,h,k)j+qh
1 ≤ j ≤ qk, and j + qh < qk because (Y1,h,k)qk

= 0.
In summary, and taking as reference the elements of the first row of X2,h,k in case
(a) and the elements of the blocks of Y in the other ones, we have the following
parameters:
(a) (X2,h,k)1,i for δk − δh < i ≤ δk.
(b) (Y1,h,k)j for max(0, ph − δk) < j ≤ min(qh, qk − 1).
(c) (Y2,h,k)j for ph < j ≤ δk.
(d) (Y1,h,k)i for qh < i ≤ qk − 1.

Adding up these four types of parameters, classified according to whether they
finish in X2,h,k, Y2,h,k or Y1,h,k, respectively, for the case δh, δk > 0 we obtain the
following total number of freedom degrees:

min(δh, δk)+max(0, min(qh, qk−1)−max(0, ph−δk))+max(0, δk−ph)+max(0, qk−qh−1) .

(II) δk = 0
In this case, we only have the blocks X1,h,k and Y1,h,k. Repeating the reasoning of

(I), if δk = 0, there only exist the parameters beginning in X1,h,k, that is, those given
by (d), and the number of parameters is

max(0, qk − qh − 1) .

(III) δh = 0, δk > 0
In this case, we only have the blocks X1,h,k, X3,h,k, Y1,h,k and Y2,h,k. It can be seen

that there are three types of parameters:
(d) Those beginning in X1,h,k and finishing in Y1,h,k.
(e) Those beginning in X3,h,k and finishing in Y1,h,k.
(f) Those beginning in X3,h,k and finishing in Y2,h,k.

Adding up these three types of parameters, for the case δh = 0, δk > 0 we obtain
the following total number of freedom degrees:

max(0, qk − qh − 1) + min(qk − 1, pk − qh − 1, δk) + max(0, δk − qh) .

Adding up all the preceding cases and grouping them according to the block of the refer-
ence parameter, we have the formula of the corollary.

Example 6.2 For the observable marked matrix in (5.2), the addends in (6.1) give, re-
spectively, 15,2,1,2,1 and 1, which correspond to the parameters (*), (t4,t5), (t3), (t1,t2),
(t7) and (t6).

6.2 Structural stability

Now we study the observable marked matrices for which all the small perturbations do
not change their equivalence class. We will see that there are no non-trivial pairs of this
type.
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Corollary 6.3 The observable marked matrices a ∈ M∗ structurally stable with regard
to the equivalence relation in (3.7) are only those of the trivial case:

(i) d = N ,
(ii) |pi − pj| ≤ 1 .

Proof.

Let a ∈M∗ be an observable marked matrix in canonical form of type (q, p). Then, it will
be structurally stable if and only if its miniversal deformation is null. Or, equivalently,
if codim Oa = 0. This means that each term in (6.1) must be 0. From the first one, it
follows δi = 0, for all i ≤ n, and then d = N . Now the fourth term gives us |pk − ph| ≤
1 for 1 ≤ h, k ≤ m.

Conversely, all the terms are null if (i)-(ii) hold.

Notice that condition (i) implies M∗ = MN+n,N(C), that is, a ∈ M∗ is a full rank
observable pair. Then, condition (ii) is exactly that obtained in [12] for this particular
case.

6.3 Bifurcation diagrams

Let us study the effect of the parameters X
′
3 and Y

′
1 in (5.8). It is clear that the Jordan

form of A2 is perturbed by X
′
2 just as in Arnold’s works.

With regard to the effects of the restriction (C1, A1) on the BK-indices, it is also clear that
they only depend on Y

′
1 and are just those of the ordinary perturbations of an observable

pair. So the initial BK-indices q1, . . . , qn will change into new indices q
′
1, . . . , q

′
n such that

they are majorized by the initial ones in the following sense (see [19]):
q
′
1 ≤ q1; q

′
1 + q

′
2 ≤ q1 + q2; · · · ; q

′
1 + · · · + q

′
n−1 ≤ q1 + · · · + qn−1; q

′
1 + · · · + q

′
n =

q1 + · · ·+ qn.

That is, the BK-indices of the restriction will be balanced until the maximal difference
between them is 1 (or 0).

In (5.9), for instance, if some of the parameters t1, t2 in Y
′
1 are non zero, then (q

′
1, q

′
2, q

′
3, q

′
4) =

(3, 2, 2, 2).

Note that they are the only BK-indices compatible with the above majorization relations
and are structurally stable because the maximal difference between them is 1.

Similarly, the BK-indices of (C,A) will be perturbed into majorized ones as above. For
instance, in (5.9) the only BK-indices majorized by the initial ones (6, 4, 3, 3) are (5, 5, 3, 3),
(5, 4, 4, 3) and (4, 4, 4, 4). In fact, the bifurcation diagram in X

′
3 is

(6, 4, 3, 3) if t3 = t4 = t5 = t6 = t7 = 0,
(5, 5, 3, 3) if t5 6= 0, t3 = t4 = t6 = t7 = 0,
(5, 4, 4, 3) if t4t6 − t3t7 = 0, some of them being non zero,
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(4, 4, 4, 4) if t4t6 − t3t7 6= 0.

Notice that the above bifurcation diagram is part of that of the miniversal deformation
in (4.7) when one prescribes the 3 parameters of XFRW

3 appearing in (5.2).

6.4 BK-deformation and S-deformation

The S-equivalence in (2.6) is, in general, finer than the ordinary block similarity or BK-
equivalence because the condition of (C,A) and (C ′, A′) being BK-equivalent does not
imply the existence of P verifying not only (i) but also (ii). In fact, (2.3) shows that a
necessary condition for the S-equivalence (but not for the BK-equivalence) is that the
restriction of both pairs to S is block-similar. However, neither this condition is sufficient.
For example, taking

S = C× {(0, 0)} ⊂ C3,




A

C


 =




0 1 0

0 0 0

0 0 0

1 0 0




,




A′

C ′


 =




0 1 0

0 0 0

0 1 0

1 0 0




one has that both pairs are block-similar, and so are their restrictions to S. Nevertheless,
a straightforward computation shows that no P verifies (i)-(ii).

Therefore, we have

Oa ⊂Mr ∩ OBK(a),

where the latter means the BK-equivalence class of a, but the converse inclusion does not
hold in general.

In the particular case of a BK-matrix aBK and S = Cd × {0} as in (4.6), in [12] one
obtains a BK-miniversal deformation which is contained in Mr. Hence, Mr is transverse
to OBK(aBK) at aBK ; therefore, in a neighborhood of it, the above intersection Mr ∩
OBK(aBK) is a differentiable manifold. In addition, its dimension is just that of OaBK

because (4.6) shows that the BK-miniversal deformation in [12] is also an S-miniversal
deformation. Thus, the converse is true in a neighborhood of aBK .

However, notice that, although the same miniversal deformation of aBK is valid with
regard to both equivalence relations, the corresponding bifurcation diagrams can be differ-
ent. For instance, for observable deformations (in fact, a generic case) the BK-bifurcation
diagram involves only the BK-indices of the pair whereas the S-one must consider other
invariants, such as the BK-indices of the restriction to S.
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[12] J. Ferrer; M.I. Garćıa; F. Puerta, Brunovsky Local Form of a Holomorphic Family of
Pais of Matrices, Linear Algebra Appl., 253 (1997), p. 175–198.
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