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Abstract

Root clustering problems of matrices are considered. Here we are given conditions
for eigenvalues of a matrix to lie in a prescribed subregion D of the complex plane.
The region D (stability region ) is defined by rational functions. A simple necessary
and sufficient condition for stability of a single matrix is obtained. For a commutting
polynomial family a necessary and sufficient condition in terms of a common solution
to a set of Lyapunov inequalities is derived. A simple sufficient condition for the
existence of a common solution for a commutting quadratic polynomial matrix
family is given. A sufficient condition for the existence of a common solution to the

Lyapunov inequalities for two 3 x 3 dimensional z-matrices is also given.
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1 Introduction

Let R™ be the set of real n vectors, R"*" (C"*") be the set of n x n real
(complex) matrices. For P € R™*" (C™") the symbol P > 0 means that
P is symmetric (Hermitian) and positive definite. Let the subregion D of the

complex plane C be defined as

D={zeC: Refj(2)gj(2) <0, =1,2,...,m}, (1)

where f; and g; are polynomials with real coefficients, and g is the complex

conjugate of g. The inequality Ref;(2)g;(z) < 0 is equivalent form of the
fi(z
g9i(2)

~

inequality Re r;j(z) < 0, where r;(z) =

The region D defined in (1) will also be referred as the stability region. It is a

generalization of the known stability regions:

If m=1, f(z)=z, g(z)=1 it is Hurwitz stability region,
If m=1, f(z)=z+1, g(z)=z-1 it is Schur stability region,
If m=2, f)(z)=z, f(z)=-2°, g;(z)=1 (j = 1,2) it is T left sector stability region,

It m:27 f1 (Z):Z+a7 fZ(Z):_Z_b7 g1 (Z):Z_a7 g?(z):Z_b

it is the ring {z € C:b < |2| < a}.

By the Lyapunov theorem the matrix A € R™*™ (C"*") is Hurwitz stable if

and only if there exists P € R™" (C™*™) , P > 0 such that

ATP+PA <O

(A*P + PA < 0)



where AT (A*) denotes the transpose (conjugate transpose) of A.
In [1] the following result is obtained (see [1], Theorem 1).

Theorem 1 ([1]). Let the stability region Q be defined as

Q={z€C:Refi(2)<0,j=1,2,...,m}, (3)

where f;(j =1,2,...,m) are all polynomials. Then the matriz A € R™™ is Q)

-stable if and only if there exists a matriz P € R™", P > 0 such that for all

/(AT P+ Pf;(A)] <. (4)

In [2], the following result on the existence of a common P > 0 for commuting

matrices Ay, Ag, ..., Ag is given (see [2], Theorem 2).

Theorem 2 . Let A; € R™" (i =1,2,..., k) be Hurwitz stable and commute

pairwise. Then there exists P € R™™™ | P > 0 such that for all 1 =1,2,...,k

ATP + PA; <O0. (5)

Note that in [2] an explicit method of generating a common P is also presented

(see (13) below).

In this work by using Theorems 1 and 2 we prove a simple criterion for D-
stability of a matrix A. We show that D-stability of a matrix A is equivalent to
the Hurwitz stability of the matrices f1(A)g; ' (A), ..., fm(A)g}(A) (Theorem

7).



Fort € [0,1] and A; € C™™ (i = 1,2,...,m) define
A(t) = Ag + A +1P2Ay + ...+ 1M A, (6)

A=T{A®W) :te [0,1]}. (7)

In (3], for A; € R™™ (i =1,2,...,k), using the guardian map concept, the
Hurwitz stability problem for the family A in (7) is considered and a condition
for stability is derived . In this work for the commuting family (6), (7), i.e. in
the case of A;A; = A;A; (1,5 =1,2,...,k), we give a necessary and sufficient
condition for D-stability in terms of a common solution to a set of Lyapunov
inequalities (Theorem 11). For the case of quadratic family (i.e. k=2 in (6))
sufficient conditions for the existence of a common solution to set of Lyapunov

inequalities are obtained (Theorems 13 and 15).

Finally, a sufficient condition for the existence of a common solution for a pair

of z-matrices is given (Theorem 17).

2 Stability of a single matrix

In this section we give a criterion for the D-stability of a matrix A € R™*™.

Lemma 3 . Let f(2) and g(z) be polynomials, A € R™*". If g(A) is invertible
then f(A) and g='(A) commute.

The proof follows from the equality f(A)g(A) = g(A)f(A).

Lemma 4 . Let fi(z), gj(z) (j =1,2,...,m) are polynomials and g;(A) are

invertible for all j = 1,2,...,m. Then the matrices r;(A) = f;(A). gj_l(A)



(j=1,2,...,m) are commutative.

Proof. By Lemma 3 the following is true

(9 (A)gi(A)] 7" fi(A) f3(A) = F5(A) fi(A) [9:(A)g;(A)] " (8)

Carring out suitable multiplications in (8), the commutativity of r;(A) follows.

Lemma 5 . If f(z) and g(z) are polynomials, A € R™™ X is an eigen-

value of A, and g(A) is invertible then g(\) # 0 and % is an eigenvalue of

f(A)g~(A).

Proof. g(\) is an eigenvalue of g(A). Since g(A) is invertible then g(A) # 0.

There exists x € C"™!, 2 # 0 such that the following can be written:

Ax = \x

fA)z = f(N)z

9(A)z = g(N)x

e L

e = )L FO)

Lemma 6 . Let f(z) and g(z) be polynomials and g(A) be invertible. If p is
an eigenvalue of f(A)g~'(A) then there exists an eigenvalue X of A such that
)

piC]
gN) # 0 and p = 163,

Proof. Let A1, Ay, ..., \, be eigenvalues of A. Then g(\;)) #0 (i =1,2,...,n)

and by Lemma 5, g E % are eigenvalues of f(A)g~'(A). Therefore, there exists
)

AOY;
g(xi)”

1 such that u =

Theorem 7 . Let A € R™" and the stability region D (1) be given. Then the



following are equivalent :
i) A is D-stable .

ii) g;j(A) are invertible and r;(A) = f;(A)g;'(A) are Hurwitz stable

(1=1,2,...,m).

iii) g;(A) are invertible and there exists P € R™" | P >0 such that

(A" P+ Prj(A)] <0G =1,2,...,m). (9)

Proof. The implication iii)==-i) follows from the Lyapunov Theorem.

ii)==1) : Let A be an arbitrary eigenvalue of A. Then g;()\) # 0 and by Lemma

9, ]gcjgg are eigenvalues of r;(A4) (j =1,2,...,m). Since r;(A) are Hurwitz
stable, then Regjgii < 0or Ref;(\)g;(\) <0 (j=1,2,...,m). Thus A € D.

i)==-iii) : Fix arbitrary j. Let u be an arbitrary eigenvalue of g;(A).

Let A1, Ag, ..., A\, be eigenvalues of A. Then g;(\1), ..., gj(\,) are the eigen-
values of g;(A). Therefore there exists ¢ such that p = g¢;(\;). Since A is
D-stable g;(A\;) = p # 0. On the other hand y is an arbitrary eigenvalue of
gj(A). Consequently g;(A) is invertible.

By Lemmas 4 and 6 the matrices 7;(A) are Hurwitz and commute
(7=1,2,...,m). Then by Theorem 2 there exists P > 0 such that (9) is

true. This completes the proof.

Theorem 7 can be extended to the case where A € C"*™ and the polynomials
f; and g; have complex coefficients. Such an extension is straightforward and

is omitted here.

Example 8 (/1]). Let A be given as



—94.7 —471 —41.1 -2.3

152 —469 3.0 —7.6

121.0 779 46.3 9.1

—116.9 65.2 —54.6 —4.7

and the region ) is the shaded region in Fig. 1.

Im(z)

30

Fig. 1. Sector 2 for Example 8.

This region can be expressed as Q@ ={z € C: Ref;(z) <0,j =1,2,3},

where f1(2) = 2, fa(2) = =27, fs(z) = —2°.
The matrices A, —A?%, and —A3 are Hurwitz stable. Therefore by Theorem 7

the matriz A is Q-stable.
In [1] this stability is established by finding a common solution P > 0 for (4),

which is more difficult problem.

Example 9 . Let A be given as



0 -0.01 0.5

-0.01 1 1.9

and D = {z € C: Ref;(2).9;,(z) < 0,5 =1,2},
where fl(Z) =z+ 17 gl(’Z) =z = 17 f2(Z> = —c = %792(2) =z %

The region D is the ring {(m,y) : i <2?+y’ < 1}. Here

1148 —10.48 —10.712
ri(A)= 118409 19.616 20.8

—20.592 —20.802 —20.008

_8.1846 —4.6161 —2.3799
r2(A)= 12438 52416 2.2451

—8.9358 —4.4912 —3.3351

and 11 (A),r2(A) are Hurwitz stable. Therefore A is D-stable.

3 Stability of a commuting family

In this section for a commuting family we give D-stablity criterion in terms
of the existence of a common positive definite solution to a set of Lyapunov

inequalities.



The following lemma is taken from [4], [5].

Lemma 10 (/4/, [5]). Let B C C"*" be a compact set of Hurwitz stable upper
triangular matrices. Then there exists o > 0 and a positive diagonal matriz D

such that

A*D+ DA < —al
for all A € B, where I is the identity matrix.

The following theorem follows from the Schur’s triangularization theorem ([6],

p.81) and Lemma 10.

Theorem 11 . Let F C R™™™ be a compact commuting family. Then F s
Hurwitz stable if and only if there exists P € R"™", P > 0 such that for all

FeF

F'P+ PF <0. (10)

It follows from Theorem 7 that for a matrix A € R™ ", D-stablity of A is
equivalent to the invertibility of all g;(A) and Hurwitz stability of all f;(A)g; " (A)

(7 =1,2,...,m). Hence we have the following corollary of Theorem 11.

Corollary 12 . Let F C R™™ be a compact commuting family. Then F is
D-stable if and only if for all F € F and for all j = 1,2,...,m the matrix

g;(A) is invertible and there exists P € R"*", P > 0 such that for all F € F,



4 Common solution for a quadratic polynomial matrix family

In this section for a quadratic polynomial matrix family we give a sufficient
condition for the existence of a common solution to the family of Lyapunov

inequalities. Let

A(t) = Ay + tA, +t2A,, (11)

where t € [0,1], and A; € R™™ are commuting (j =0, 1,2). It follows from
Theorem 11 that the family A = {A(¢) : ¢t € [0,1]} is Hurwitz stable if and
only if there exists a common positive definite solution to a set of Lyapunov
inequalities (see (10)). Here we give one class of the family (11) for which a

common positive definite P exists.

As proved in [2] for Hurwitz stable commutative matrices A and B a common

positive definite solution to the Lyapunov inequalities exists and the matrix

o0

P = /exp (BTt)

o0

/ (ATT) Py exp(AT)dr | exp(Bt)dt (12)

is a common solution, where P > 0 is an arbitrary.

Theorem 13 . Let A(t) (11) be given and Ay, A1, As be pairwise commuta-
tive. Assume that Ag, and Ao+ Ay + As are Hurwitz stable and for the matrix

P (12) with A = Ao, B = Ao + A1 + Ay the matriz inequality
ATP 4+ PAy >0 (13)
is true. Then the family A = {A(t):te€[0,1]} is Hurwitz stable and

P is a common solution to the Lyapunov inequalities for the family A.

10



Proof. We have to prove the inequality

max Amax(A” ()P + PA(t)) <0, (14)

te(0,1]

where Apay () indicates the maximum eigenvalue. We have

(1) 2 Anax (AT (£) P + PA(t))
=maxv’ (AT (t)P + PA(t))v (15)

veV

A

=max f(1,v),
where V = {v € R": |lv|| = 1}, f(t,v) = vT (AT(t)P+ PA(t)) v. The func-
tion ¢ — f(t,v) is convex. Indeed, by (11), (13)

92 f

@ ZZUT(AgP + PAQ)U > 0,

so the function t — f(¢,v) is convex and ¢(t) is also convex (the maximum
of a family of convex functions is also convex). Every continuous convex func-

tion defined on a closed interval attains its maximum value at the endpoints.

Therefore

mnax p(t) =max {¢(0), p(1)}

= max { Apax (A(0)" P+ PA(0)), Amax (A(1)7P + PA(1)) }
We have A(0) = Ay, A(1) = Ao + A; + As. A(0) and A(1) are Hurwitz
stable and commutative. Then by Theorem 2 the pair {A4(0), A(1)} has a
common solution to the Lyapunov inequalities and the matrix P (12) with
A = A(0), B = A(1) is a common solution, that is Apax (AT(O)P + PA(O)) <
0, and Apax (AT(l)P+PA(1)) < 0. Therefore, by (15), ¢(t) < 0 for all

t € [0,1] and (14) is true.
Corollary 14 . Let A(t) = Ao+ tA; + 21 (t € [0,1]) be given

11



where AgA; = A1 Ag. Then the family {A(t) : t € [0,1]} is Hurwitz stable and
there exists a common P > 0 for this family if and only if Ay and Ao+ Ay +1

are Hurwitz stable.

Now consider (11), where Ay, A;, Ay are not necessarily commutative.

The following theorem can be proved similarly.

Theorem 15 . Let the family A(t) (t € [0,1]) (11) be given. Assume that Ao
and Ao+ A; + Ay are Hurwitz stable and there exists a common solution P > 0
to the Lyapunov inequalities for the pair {Ag, Ao + A1 + Ao} and assume that
this common P satisfies (13). Then the family A = {A(t) : t € [0, 1] }is Hurwitz
stable and P is a common solution to the Lyapunov inequalities for the family

A .

5 Common solution for two 3 x 3 dimensional z- matrices

Recall that a real n x n matrix A = (a;;) is said to be z-matrix if a;; < 0 for
all i # j. The matrix A is called mergelian if —A is z-matrix.

The following properties of z-matrices can be found in [8]:

a) If A is z-matrix and positive stable (i.e. all eigenvalues lie in the open right

half plane) then all principle submatrices of A are also positive stable

b) Let A and B be n x n positive stable z-matrices. Then the segment [A, B|

is positive stable if and only if the matrix AB~! has no negative eigenvalues.

Let A and B be two positive stable 2 x 2 dimensional matrices. Then there

exists a positive definite matrix P € R?**2 such that

12



ATP+PA>0 (16)
B'P+PB >0 (17)

if and only if the matrices AB and AB™! have no negative eigenvalues [7].

Theorem 16 . Let A and B be 2 x 2 dimensional positive stable z-matrices.
Then the matriz segment [A, B] is positive stable if and only if there exists a

common positive definite solution P of the Lyapunov inequalities (16), (17).

Proof. =): Since the matrix segment [A, B] is positive stable then by b) the
matrix AB~! has no real negative eigenvalues. Now we need to show that the

matrix AB has no negative eigenvalues also. Let

ab mn am + bp an + bg
AB =

cd D q cm + dp cn + dq

Then b < 0,¢ < 0,n <0,p <0, and from positive stability of A, B and a) it

follows that a > 0,d > 0,m > 0,q > 0. AB has the characteristic equation
N — B\ + det(AB) = 0, (18)

where 8 = am + bp + cn + dg > 0. Hence

A: B \/p? —24det(AB)_

If equation (18) has a negative root then

(3% > 4det(AB),
B < \/? — ddet(AB)

and from this we get

13



det(AB) < 0. (19)

Since —A and —B are Hurwitz stable then detA > 0, detB > 0 which con-
tradicts (19). Thus the matrix AB has no negative real eigenvalue. Then by
(16), (17), it follows that there exists a common positive definite solution of
the Lyapunov inequalities.

The implication <) is obvious.

We now proceed to the existence problem of a common solution of the Lya-

punov inequalities for two positive stable 3 x 3 dimensional z-matrices.

Let A = (a;;), B = (b;) be two positive stable, 3 x 3 dimensional z-matrices
and assume that the matrix segment [A, B] is also positive stable (necessary
condition for the existence of a common solution and this condition is equiv-

alent to the nonexistence of negative eigenvalues of flé_l).

Write A and B as

A a13 B b13
A= 23 B = bas |
31 a3z A33 b31 b3 b33

then by a) the matrix segment [A, B] is also positive stable. By Theorem 16
there exists a common solution P > 0 of the Lyapunov inequalities for the

pair {4, B}. Define P > 0 as follows:

14
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(20)

001

Theorem 17 . Let A and B be 3 x 3 dimensional z- matrices and the segment

[A, B] be positive stable. If P is defined as in (20) and

det [A"P + PA| >0 (21)
det [B"P + PB| >0 (22)

then the matriz P (20) is a common solution of the Lyapunov inequalities for

the pair {A, B}.

Proof. Consider C; = ATP+ PA, Cy = BT P+ PB. The matrices C; and C,

are symmetric and have the form

ATP + PA « BTP+ PB
Cl — * ,CQ — * (23)
* *x % * * %

Since P is a common solution for the pair {A, B} then (16), (17) are satisfied.
From this and (21), (22) it follows that C} > 0,Cy > 0.
A similar sufficient condition can be formulated using lower principal subma-

trices of A, and B but we omit this.

Example 18 . Consider the positively stable, z-matrices

15



6 —1-1 8§ -2 —1
A=|_9 1 _—o5|:B=|-2 4 1
—0.5 -2 15 —0.5 —0.5 10

The matriz segment [ﬁ, Bl is positive stable since AB™* has no negative eigen-

values. Define

12.6762 —2.7909

—2.7909 5.6962

where P > 0 is the common solution for the pair {A, B}. For the matriz

12.6762 —2.7909 0

—2.7909 5.6962 0

0 0 1

(21), (22) are satisfied and by Theorem 17 the matriz P is a common solution

for the pair {ﬁ, l—~3}
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