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Abstract

Root clustering problems of matrices are considered. Here we are given conditions

for eigenvalues of a matrix to lie in a prescribed subregion D of the complex plane.

The region D (stability region ) is defined by rational functions. A simple necessary

and sufficient condition for stability of a single matrix is obtained. For a commutting

polynomial family a necessary and sufficient condition in terms of a common solution

to a set of Lyapunov inequalities is derived. A simple sufficient condition for the

existence of a common solution for a commutting quadratic polynomial matrix

family is given. A sufficient condition for the existence of a common solution to the

Lyapunov inequalities for two 3 × 3 dimensional z-matrices is also given.
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1 Introduction

Let R
n be the set of real n vectors, R

n×n (Cn×n) be the set of n × n real

(complex) matrices. For P ∈ R
n×n (Cn×n) the symbol P > 0 means that

P is symmetric (Hermitian) and positive definite. Let the subregion D of the

complex plane C be defined as

D = {z ∈ C : Refj(z)ḡj(z) < 0, j = 1, 2, . . . ,m} , (1)

where fj and gj are polynomials with real coefficients, and ḡ is the complex

conjugate of g. The inequality Refj(z)ḡj(z) < 0 is equivalent form of the

inequality Re rj(z) < 0, where rj(z) = fj(z)

gj(z)
.

The region D defined in (1) will also be referred as the stability region. It is a

generalization of the known stability regions:

If m=1, f(z)=z, g(z)=1 it is Hurwitz stability region,

If m=1, f(z)=z+1, g(z)=z-1 it is Schur stability region,

If m=2, f1(z)=z, f2(z)=-z2, gj(z)=1 (j = 1, 2) it is π
4

left sector stability region,

If m=2, f1(z)=z+a, f2(z)=-z-b, g1(z)=z-a, g2(z)=z-b

it is the ring {z ∈ C :b < |z| < a} .

By the Lyapunov theorem the matrix A ∈ R
n×n (Cn×n) is Hurwitz stable if

and only if there exists P ∈ R
n×n (Cn×n) , P > 0 such that

AT P + PA < 0

(A∗P + PA < 0)

(2)
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where AT (A∗) denotes the transpose (conjugate transpose) of A.

In [1] the following result is obtained (see [1], Theorem 1).

Theorem 1 ([1]). Let the stability region Ω be defined as

Ω = {z ∈ C : Refj(z) < 0, j = 1, 2, . . . ,m} , (3)

where fj(j = 1, 2, . . . ,m) are all polynomials. Then the matrix A ∈ R
n×n is Ω

-stable if and only if there exists a matrix P ∈ R
n×n, P > 0 such that for all

j = 1, 2, . . . ,m

[fj(A)]T P + P [fj(A)] < 0. (4)

In [2], the following result on the existence of a common P > 0 for commuting

matrices A1, A2, . . . , Ak is given (see [2], Theorem 2).

Theorem 2 . Let Ai ∈ R
n×n (i = 1, 2, . . . , k) be Hurwitz stable and commute

pairwise. Then there exists P ∈ R
n×n , P > 0 such that for all i = 1, 2, . . . , k

AT
i P + PAi < 0. (5)

Note that in [2] an explicit method of generating a common P is also presented

(see (13) below).

In this work by using Theorems 1 and 2 we prove a simple criterion for D-

stability of a matrix A. We show that D-stability of a matrix A is equivalent to

the Hurwitz stability of the matrices f1(A)g−1
1 (A), . . . , fm(A)g−1

m (A) (Theorem

7).

3



For t ∈ [0, 1] and Ai ∈ C
n×n (i = 1, 2, . . . ,m) define

A(t) = A0 + tA1 + t2A2 + . . . + tkAk, (6)

A = {A(t) : t ∈ [0, 1]} . (7)

In [3], for Ai ∈ R
n×n (i = 1, 2, . . . , k) , using the guardian map concept, the

Hurwitz stability problem for the family A in (7) is considered and a condition

for stability is derived . In this work for the commuting family (6), (7), i.e. in

the case of AiAj = AjAi (i, j = 1, 2, . . . , k), we give a necessary and sufficient

condition for D-stability in terms of a common solution to a set of Lyapunov

inequalities (Theorem 11). For the case of quadratic family (i.e. k=2 in (6))

sufficient conditions for the existence of a common solution to set of Lyapunov

inequalities are obtained (Theorems 13 and 15).

Finally, a sufficient condition for the existence of a common solution for a pair

of z-matrices is given (Theorem 17).

2 Stability of a single matrix

In this section we give a criterion for the D-stability of a matrix A ∈ R
n×n.

Lemma 3 . Let f(z) and g(z) be polynomials, A ∈ R
n×n. If g(A) is invertible

then f(A) and g−1(A) commute.

The proof follows from the equality f(A)g(A) = g(A)f(A).

Lemma 4 . Let fj(z), gj(z) (j = 1, 2, . . . ,m) are polynomials and gj(A) are

invertible for all j = 1, 2, . . . ,m. Then the matrices rj(A) = fj(A). g−1
j (A)
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(j = 1, 2, . . . ,m) are commutative.

Proof. By Lemma 3 the following is true

[gj(A)gi(A)]−1
fi(A)fj(A) = fj(A)fi(A) [gi(A)gj(A)]−1

. (8)

Carring out suitable multiplications in (8), the commutativity of rj(A) follows.

Lemma 5 . If f(z) and g(z) are polynomials, A ∈ R
n×n, λ is an eigen-

value of A, and g(A) is invertible then g(λ) 6= 0 and f(λ)
g(λ)

is an eigenvalue of

f(A)g−1(A).

Proof. g(λ) is an eigenvalue of g(A). Since g(A) is invertible then g(λ) 6= 0.

There exists x ∈ C
n×1, x 6= 0 such that the following can be written:

Ax = λx

f(A)x = f(λ)x

g(A)x = g(λ)x

g−1(A)x =
1

g(λ)
x

f(A)g−1(A)x = f(A)
1

g(λ)
x =

f(λ)

g(λ)
x.

Lemma 6 . Let f(z) and g(z) be polynomials and g(A) be invertible. If µ is

an eigenvalue of f(A)g−1(A) then there exists an eigenvalue λ of A such that

g(λ) 6= 0 and µ = f(λ)
g(λ)

.

Proof. Let λ1, λ2, . . . , λn be eigenvalues of A. Then g(λi) 6= 0 (i = 1, 2, . . . , n)

and by Lemma 5, f(λi)
g(λi)

are eigenvalues of f(A)g−1(A). Therefore, there exists

i such that µ = f(λi)
g(λi)

.

Theorem 7 . Let A ∈ R
n×n and the stability region D (1) be given. Then the
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following are equivalent :

i) A is D-stable .

ii) gj(A) are invertible and rj(A) = fj(A)g−1
j (A) are Hurwitz stable

(j = 1, 2, . . . ,m).

iii) gj(A) are invertible and there exists P ∈ R
n×n , P > 0 such that

[rj(A)]T P + P [rj(A)] < 0 (j = 1, 2, . . . ,m) . (9)

Proof. The implication iii)=⇒ii) follows from the Lyapunov Theorem.

ii)=⇒i) : Let λ be an arbitrary eigenvalue of A. Then gj(λ) 6= 0 and by Lemma

5, fj(λ)

gj(λ)
are eigenvalues of rj(A) (j = 1, 2, . . . ,m) . Since rj(A) are Hurwitz

stable, then Re
fj(λ)

gj(λ)
< 0 or Refj(λ)ḡj(λ) < 0 (j = 1, 2, . . . ,m). Thus λ ∈ D.

i)=⇒iii) : Fix arbitrary j. Let µ be an arbitrary eigenvalue of gj(A).

Let λ1, λ2, . . . , λn be eigenvalues of A. Then gj(λ1), . . . , gj(λn) are the eigen-

values of gj(A). Therefore there exists i such that µ = gj(λi). Since A is

D-stable gj(λi) = µ 6= 0. On the other hand µ is an arbitrary eigenvalue of

gj(A). Consequently gj(A) is invertible.

By Lemmas 4 and 6 the matrices rj(A) are Hurwitz and commute

(j = 1, 2, . . . ,m). Then by Theorem 2 there exists P > 0 such that (9) is

true. This completes the proof.

Theorem 7 can be extended to the case where A ∈ C
n×n and the polynomials

fj and gj have complex coefficients. Such an extension is straightforward and

is omitted here.

Example 8 ([1]). Let A be given as
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A =




−94.7 −47.1 −41.1 −2.3

15.2 −46.9 3.0 −7.6

121.0 77.9 46.3 9.1

−116.9 65.2 −54.6 −4.7




and the region Ω is the shaded region in Fig. 1.

Im(z)

Re(z)

15◦

30◦

Fig. 1. Sector Ω for Example 8.

This region can be expressed as Ω = {z ∈ C : Refj(z) < 0, j = 1, 2, 3},

where f1(z) = z, f2(z) = −z2, f3(z) = −z3.

The matrices A, −A2, and −A3 are Hurwitz stable. Therefore by Theorem 7

the matrix A is Ω-stable.

In [1] this stability is established by finding a common solution P > 0 for (4),

which is more difficult problem.

Example 9 . Let A be given as
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A =




0 −0.01 0.5

1 0 −1.5

−0.01 1 1.9




and D = {z ∈ C : Refj(z).ḡj(z) < 0, j = 1, 2},

where f1(z) = z + 1, g1(z) = z − 1, f2(z) = −z − 1
2
, g2(z) = z − 1

2
.

The region D is the ring
{
(x, y) : 1

4
< x2 + y2 < 1

}
. Here

r1(A) =




−11.48 −10.48 −10.712

18.409 19.616 20.8

−20.592 −20.802 −20.008




r2(A) =




−8.1846 −4.6161 −2.3799

12.438 5.2416 2.2451

−8.9358 −4.4912 −3.3351




and r1(A), r2(A) are Hurwitz stable. Therefore A is D-stable.

3 Stability of a commuting family

In this section for a commuting family we give D-stablity criterion in terms

of the existence of a common positive definite solution to a set of Lyapunov

inequalities.
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The following lemma is taken from [4], [5].

Lemma 10 ([4], [5]). Let B ⊂ C
n×n be a compact set of Hurwitz stable upper

triangular matrices. Then there exists α > 0 and a positive diagonal matrix D

such that

A∗D + DA ≤ −αI

for all A ∈ B, where I is the identity matrix.

The following theorem follows from the Schur’s triangularization theorem ([6],

p.81) and Lemma 10.

Theorem 11 . Let F ⊂ R
n×n be a compact commuting family. Then F is

Hurwitz stable if and only if there exists P ∈ R
n×n, P > 0 such that for all

F ∈ F

F T P + PF < 0. (10)

It follows from Theorem 7 that for a matrix A ∈ R
n×n, D-stablity of A is

equivalent to the invertibility of all gj(A) and Hurwitz stability of all fj(A)g−1
j (A)

(j = 1, 2, . . . ,m). Hence we have the following corollary of Theorem 11.

Corollary 12 . Let F ⊂ R
n×n be a compact commuting family. Then F is

D-stable if and only if for all F ∈ F and for all j = 1, 2, . . . ,m the matrix

gj(A) is invertible and there exists P ∈ R
n×n, P > 0 such that for all F ∈ F ,

j = 1, 2, . . . ,m

[
fj (F ) g−1

j (F )
]T

P + P
[
fj (F ) g−1

j (F )
]

< 0.
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4 Common solution for a quadratic polynomial matrix family

In this section for a quadratic polynomial matrix family we give a sufficient

condition for the existence of a common solution to the family of Lyapunov

inequalities. Let

A(t) = A0 + tA1 + t2A2, (11)

where t ∈ [0, 1], and Aj ∈ R
n×n are commuting (j = 0, 1, 2) . It follows from

Theorem 11 that the family A = {A(t) : t ∈ [0, 1]} is Hurwitz stable if and

only if there exists a common positive definite solution to a set of Lyapunov

inequalities (see (10)). Here we give one class of the family (11) for which a

common positive definite P exists.

As proved in [2] for Hurwitz stable commutative matrices A and B a common

positive definite solution to the Lyapunov inequalities exists and the matrix

P =

∞∫

0

exp(BT t)




∞∫

0

exp(AT τ)P0 exp(Aτ)dτ


 exp(Bt)dt (12)

is a common solution, where P0 > 0 is an arbitrary.

Theorem 13 . Let A(t) (11) be given and A0, A1, A2 be pairwise commuta-

tive. Assume that A0, and A0 +A1 +A2 are Hurwitz stable and for the matrix

P (12) with A = A0, B = A0 + A1 + A2 the matrix inequality

AT
2 P + PA2 > 0 (13)

is true. Then the family A = {A(t) : t ∈ [0, 1]} is Hurwitz stable and

P is a common solution to the Lyapunov inequalities for the family A.
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Proof. We have to prove the inequality

max
t∈[0,1]

λmax(A
T (t)P + PA(t)) < 0, (14)

where λmax (.) indicates the maximum eigenvalue. We have

ϕ(t) , λmax(A
T (t)P + PA(t))

= max
v∈V

vT (AT (t)P + PA(t))v (15)

, max
v∈V

f(t, v),

where V = {v ∈ R
n : ‖v‖ = 1} , f(t, v) = vT

(
AT (t)P + PA(t)

)
v. The func-

tion t → f(t, v) is convex. Indeed, by (11), (13)

∂2f

∂t2
= 2vT (AT

2 P + PA2)v > 0,

so the function t → f(t, v) is convex and ϕ(t) is also convex (the maximum

of a family of convex functions is also convex). Every continuous convex func-

tion defined on a closed interval attains its maximum value at the endpoints.

Therefore

max
t∈[0,1]

ϕ(t) = max {ϕ(0), ϕ(1)}

= max
{
λmax

(
A(0)T P + PA(0)

)
, λmax

(
A(1)T P + PA(1)

)}

We have A(0) = A0, A(1) = A0 + A1 + A2. A(0) and A(1) are Hurwitz

stable and commutative. Then by Theorem 2 the pair {A(0), A(1)} has a

common solution to the Lyapunov inequalities and the matrix P (12) with

A = A(0), B = A(1) is a common solution, that is λmax

(
AT (0)P + PA(0)

)
<

0, and λmax

(
AT (1)P + PA(1)

)
< 0. Therefore, by (15), ϕ(t) < 0 for all

t ∈ [0, 1] and (14) is true.

Corollary 14 . Let A(t) = A0 + tA1 + t2I (t ∈ [0, 1]) be given
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where A0A1 = A1A0. Then the family {A(t) : t ∈ [0, 1]} is Hurwitz stable and

there exists a common P > 0 for this family if and only if A0 and A0 +A1 + I

are Hurwitz stable.

Now consider (11), where A0, A1, A2 are not necessarily commutative.

The following theorem can be proved similarly.

Theorem 15 . Let the family A(t) (t ∈ [0, 1]) (11) be given. Assume that A0

and A0+A1+A2 are Hurwitz stable and there exists a common solution P > 0

to the Lyapunov inequalities for the pair {A0, A0 + A1 + A2} and assume that

this common P satisfies (13). Then the family A = {A(t) : t ∈ [0, 1]}is Hurwitz

stable and P is a common solution to the Lyapunov inequalities for the family

A .

5 Common solution for two 3 × 3 dimensional z- matrices

Recall that a real n × n matrix A = (aij) is said to be z-matrix if aij ≤ 0 for

all i 6= j. The matrix A is called mergelian if −A is z-matrix.

The following properties of z-matrices can be found in [8]:

a) If A is z-matrix and positive stable (i.e. all eigenvalues lie in the open right

half plane) then all principle submatrices of A are also positive stable

b) Let A and B be n × n positive stable z-matrices. Then the segment [A,B]

is positive stable if and only if the matrix AB−1 has no negative eigenvalues.

Let A and B be two positive stable 2 × 2 dimensional matrices. Then there

exists a positive definite matrix P ∈ R2×2 such that
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AT P + PA > 0 (16)

BT P + PB > 0 (17)

if and only if the matrices AB and AB−1 have no negative eigenvalues [7].

Theorem 16 . Let A and B be 2 × 2 dimensional positive stable z-matrices.

Then the matrix segment [A,B] is positive stable if and only if there exists a

common positive definite solution P of the Lyapunov inequalities (16), (17).

Proof. =⇒): Since the matrix segment [A,B] is positive stable then by b) the

matrix AB−1 has no real negative eigenvalues. Now we need to show that the

matrix AB has no negative eigenvalues also. Let

A =




a b

c d




, B =




m n

p q




, AB =




am + bp an + bq

cm + dp cn + dq




Then b ≤ 0, c ≤ 0, n ≤ 0, p ≤ 0, and from positive stability of A,B and a) it

follows that a > 0, d > 0,m > 0, q > 0. AB has the characteristic equation

λ2 − βλ + det(AB) = 0, (18)

where β = am + bp + cn + dq > 0. Hence

λ =
β ±

√
β2 − 4det(AB)

2
.

If equation (18) has a negative root then

β2 ≥ 4det(AB),

β <
√

β2 − 4det(AB)

and from this we get
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det(AB) < 0. (19)

Since −A and −B are Hurwitz stable then detA > 0, detB > 0 which con-

tradicts (19). Thus the matrix AB has no negative real eigenvalue. Then by

(16), (17), it follows that there exists a common positive definite solution of

the Lyapunov inequalities.

The implication ⇐) is obvious.

We now proceed to the existence problem of a common solution of the Lya-

punov inequalities for two positive stable 3 × 3 dimensional z-matrices.

Let Ã = (aij), B̃ = (bij) be two positive stable, 3 × 3 dimensional z-matrices

and assume that the matrix segment [Ã, B̃] is also positive stable (necessary

condition for the existence of a common solution and this condition is equiv-

alent to the nonexistence of negative eigenvalues of ÃB̃−1).

Write A and B as

Ã =




A a13

a23

a31 a32 a33




, B̃ =




B b13

b23

b31 b32 b33




,

then by a) the matrix segment [A,B] is also positive stable. By Theorem 16

there exists a common solution P > 0 of the Lyapunov inequalities for the

pair {A,B}. Define P̃ > 0 as follows:
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P̃ =




P 0

0

0 0 1




. (20)

Theorem 17 . Let Ã and B̃ be 3 × 3 dimensional z- matrices and the segment

[Ã, B̃] be positive stable. If P̃ is defined as in (20) and

det
[
ÃT P̃ + P̃ Ã

]
> 0 (21)

det
[
B̃T P̃ + P̃ B̃

]
> 0 (22)

then the matrix P̃ (20) is a common solution of the Lyapunov inequalities for

the pair {Ã, B̃}.

Proof. Consider C1 = ÃT P̃ + P̃ Ã, C2 = B̃T P̃ + P̃ B̃. The matrices C1 and C2

are symmetric and have the form

C1 =




AT P + PA ⋆

⋆

⋆ ⋆ ⋆




, C2 =




BT P + PB ⋆

⋆

⋆ ⋆ ⋆




(23)

Since P is a common solution for the pair {A,B} then (16), (17) are satisfied.

From this and (21), (22) it follows that C1 > 0, C2 > 0.

A similar sufficient condition can be formulated using lower principal subma-

trices of Ã, and B̃ but we omit this.

Example 18 . Consider the positively stable, z-matrices
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Ã =




6 −1 −1

−2 1 −0.5

−0.5 −2 15




, B̃ =




8 −2 −1

−2 4 −1

−0.5 −0.5 10




.

The matrix segment
[
Ã, B̃

]
is positive stable since ÃB̃−1 has no negative eigen-

values. Define

A =




6 −1

−2 1




, B =




8 −2

−2 4




, P =




12.6762 −2.7909

−2.7909 5.6962




where P > 0 is the common solution for the pair {A,B}. For the matrix

P̃ =




12.6762 −2.7909 0

−2.7909 5.6962 0

0 0 1




.

(21), (22) are satisfied and by Theorem 17 the matrix P̃ is a common solution

for the pair {Ã, B̃}.
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