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Abstract

We investigate the action of semigroups of d× d matrices with entries
in the max-plus semifield on the max-plus projective space. Recall that
semigroups generated by one element with projectively bounded image are
projectively finite and thus contain idempotent elements.

In terms of orbits, our main result states that the image of a minimal
orbit by an idempotent element of the semigroup with minimal rank has
at most d! elements. Moreover, each idempotent element with minimal
rank maps at least one orbit onto a singleton.

This allows us to deduce the central limit theorem for a stochastic recur-
rent sequences driven by independent random matrices that take countably
many values, as soon as the semigroup generated by the values contains
an element with projectively bounded image.

1 Introduction

1.1 Definitions

In this article, we investigate the action of semigroups of d × d matrices with
entries in the max-plus semifield. This semifield will be denoted by Rmax and
is the set R∪ {−∞} equipped with operations � = max and � = +. The set of
all square matrices with size d will be Rd×d

max.
Those matrices have been extensively studied since the sixties. An early

reference is [CG79]. For a recent introduction, see [HOvdW06]. Products of
matrices or vectors with appropriate size are given by the following formula

(A�B)ij = �kAik�Bkj = max
k

(Aik +Bkj). (1)

As in the usual linear algebra, one can identify the matrix A and the function
from Rd

max to itself that maps x on A�x.
A matrix A ∈ Rd×d

max is called regular if it has at least one finite entry in each
row. In formula ∀i,∃j, Aij 6= −∞. Regular matrices are exactly those that map
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Rd into itself. In the sequel, we will only consider regular matrices, and identify
them with the map they define on Rd, which are known to be non-expanding
with respect to the infinity norm ([CT80]).

For any a ∈ Rd, the max-plus line Rmax�a is the affine line that goes
through a and is parallel to the unit vector 1 = (1, · · · , 1)′ augmented by
(−∞)d. Therefore we will call max-plus projective space PRd

max the quotient
space of Rd 1 by the equivalence relation ∼ defined by x ∼ y if x− y is propor-
tional to 1. Moreover, x will be the equivalence class of x.

The mapping x 7→ (xi−xj)i<j embeds PRd
max onto a subspace of R

d(d−1)
2 with

dimension d − 1. The infinity norm of R
d(d−1)

2 therefore induces a distance on
PRd

max which will be denoted by δ. A direct computation shows that δ(x, y) =
maxi(xi − yi) + maxi(yi − xi). By a slight abuse, we will also write δ(x, y) for
δ(x, y).

Regular matrices define maps from PRd
max to itself. Such maps are called

projective maps and are non-expanding with respect to δ (Mairesse [Mai97]).
The projective map defined by A will be denoted by A. We are interested in
the action of semigroups of projective maps on PRd

max.

1.2 Motivations

Our primary motivation to study the orbits in the projective space is the un-
derstanding of the so-called stochastic max-plus linear systems. These are the
systems, whose state space is Rd and the state x(n + 1) of the system at time
n+ 1 follows from the state at time n by the recurrence relation

x(n+ 1) = An�x(n). (2)

Those systems appear in the modeling of a wide class of discrete event
systems, such as transportation systems (e.g. [HdV01]), computer networks
(e.g. [BH00]) or production lines (e.g. [CDQV85]). For the sake of simplic-
ity, we will restrict our attention to the case in which (An)n∈N is a sequence
of independent identically distributed (i.i.d. for short) random regular matri-
ces that take countably many values. In formulas, we assume that there is
a countable set V of regular d × d matrices such that P(An ∈ V ) = 1 for
all n, and for any integers n1 < n2 · · · < nk and matrices Bi ∈ V , we have
P(∀i, Ani = Bi) = Πk

i=1P(A1 = Bi).
In the deterministic case (i.e. An = A for all n), those system are well

described. Indeed, when A is projectively bounded (meaning that the image of
A is bounded), the semigroup generated by A is finite ([CDQV83, CDQV85]),
which implies that (x(n))n∈N is ultimately pseudo-periodic. In formulas, there
are a real ρ, and to integers c and N such that x(n + c) = ρ�c�x(n) for any
n ≥ N .

1We defined the projective space as the quotient of Rd and not of Rd
max\{−∞d}, so that the

projective space is not compact. Another choice would have been to work with the isometric
field (R+, max,×) and the usual projective space, restrited to its nonnegative quadrant. Since
we will see in Remark 1.1 that we must restrict to bounded sets, it is more convenient to work
with our definition.
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In the stochastic case, Mairesse introduced the notion of memory loss prop-
erty (MLP), which means that there is an integer m such that the matrix
Am� · · ·�A0 has rank one (i.e. the map it defines on PRd

max is a constant) with
positive probability. This property implies a variety of stability theorems (see
[Mai97, GH00, Mer05, Mer07]) for (x(n))n∈N.

When A0 takes countably many values, (An)n∈N has MLP if and only if the
semigroup generated by those values contains an element with rank one. This
implies that there is only one minimal orbit in PRd

max under the action of this
semigroup. In [Mer04], we have shown that the semigroup generated by two
finite matrices A and B has a rank 1-element, except if the pair (A,B) is an
element of a finite union of hyperplanes of (Rd×d)2.

This result says that MLP is generic in a strong sense among sequences of
matrices that takes countably many values. Moreover, we have a similar result
for arbitrary sequences. But what about the degenerate case ? This question
is interesting not only theoretically, but also from an applied point of view.
Indeed, as dimension d becomes large, the number of conditions to check to
prove the MLP grows quicker than d!. Moreover, those conditions depend on
the values of the matrices, that are not always precisely known. Therefore, we
looked for a simpler condition that would only depend on the place of finite
entries in the matrices.

A natural candidate for this condition is the existence of an integer m such
that Am� · · ·�A0 is projectively bounded with positive probability. Since a
matrix is projectively bounded if and only if the entries of each of its column
vectors are either all finite or all equal to −∞, this condition only depends on
the place of finite entries in the matrices. It is a natural condition for several
reasons. First, it ensures that the limit of

(
1
nxi(n)

)
n∈N exists, is deterministic,

and is the same for all i (see [Hon01]). Second, it is a translation into the max-
plus case of the hypothesis that ensures the Central Limit Theorem (CLT) for
usual product of nonnegative matrices (see [Hen97]). Note that the proof of the
CLT can not be adapted with this hypothesis, because it relies on the fact that
projectively bounded matrices are strictly contracting with respect to Hilbert
distance. The condition that Am� · · ·�A0 is strictly contracting with respect
to δ is exactly the MLP, which also ensure CLT (see [Mer05, Mer07]).

To deal with the projective boundedness condition, we introduce the no-
tion of pseudo-primitive semigroups of projective maps, that is semigroups that
contain at least one projectively bounded element2. The main theorem of this
paper, to be stated in the next section, gives an insight into the orbit of such
semigroups, which will allow us to deduce the CLT for (x(n))n∈N.

1.3 Statements

Our main result is the following

Theorem 1.1. Let S be a pseudo-primitive semigroup of max-plus projective
maps and P be a bounded element of S such that P ◦ P = P and such that

2In [Gau94], Gaubert calls primitive the finitely generated semigroups all elements but
finitely many have only finite entries
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dim(ImP ) is minimal in S. Then all elements in PS have a common fixed
point.

Moreover ∩A∈SImPA is a nonempty compact set on which PS acts as a
finite group of isometries, with at most (dimImP )! elements.

In terms of orbits, it says that the image of a minimal orbit by an idempotent
element of the semigroup with minimal tropical rank3 has at most (dimImP )!
elements. Moreover, each idempotent element with minimal rank maps at least
one orbit onto a singleton.
Remarks 1.1.

1. The dimension of the image of a max-plus linear map is well defined, since
such a map is affine on convex sets with nonempty interior whose union is
the whole initial set. By a slight abuse of notation, we will write dimImA
for dimImA it is well defined, because if A = B, then ImA = ImB.

2. It is necessary to assume that the semigroup is pseudo-primitive. Indeed,
consider the semigroup of all regular diagonal matrices {A ∈ Rd×d

max|Aij 6=
−∞ ⇔ i = j} and S the semigroup of projective maps it defines. It is
actually the group of all translations of PRd

max, thus PS = S for all P ∈ S.
On the other hand all its elements but the identity have no fixed point.

To state the corollary, let us recall that the top Lyapunov exponent of
an i.i.d. sequence of random regular matrices is the limit of the sequence(

1
n maxi,j (An� · · ·�A0)ij

)
n∈N

, which converges almost surely and in mean, as

soon as A1�0 is integrable.

Corollary 1.2 (CLT). Let (An)n∈N be a sequence of independent identically
distributed random regular matrices that take countably many values and γ be
its top Lyapunov exponent.

If the semigroup generated by those values is pseudo-primitive, then for any
initial vector X0 the sequence

(
1√
n

(An� · · ·�A0�X0 − nγ�1)
)
n∈N

converges in

law to a normal distribution with dimension 1.

Remarks 1.2.

1. This result proves the CLT only for matrices An that take countably many
values. On the other hand, the MLP can be stated for any matrices and
implies CLT. (See [Mer07, Mer05]) We therefore expect that CLT holds as
soon as Am� · · ·�A0 is projectively bounded for some m. Unfortunately,
the proof of Corollary 1.2 relies on the existence of a given matrix P that
should appear as product Am� · · ·�A0 with positive probability. Thus,
this proof can not be extended right away to arbitrary matrices An.

2. Theorem 1.1 could be used to prove other limit theorems than the CLT
of Corollary 1.2, such as Local limit theorem, renewal theorem, or CLT
with rate. It also works for sequences of dependant matrices, that satisfy
suitable mixing hypotheses. Most of the needed estimates are availabe
in [Mer05, Mer07].

3For a survey about the several notions of max-plus ranks, see [DSS05]
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The remaining of this article is devoted to the proof of Theorem 1.1 and its
corollary. In the next section, we recall some elements of the asymptotic theory
of matrices in Rd×d

max. In Section 3, we prove the theorem in a nice but rare case,
where all matrices have maximal rank. In section 4, we deduce the general case
from this nice case. Finally, Section 5 is devoted to the proof of the corollary.

2 Asymptotic theory of matrices

In this section, we briefly review some elements of spectral and asymptotic the-
ory of max-plus matrices. For a complete exposition, see Baccelli et al. [BCOQ92]
or Heidergott et al. [HOvdW06].

Definition 2.1. A circuit on a directed graph is a closed path on the graph.
Let A be a square matrix of size d with entries in Rmax.

i) The graph of A is the directed weighted graph whose nodes are the integers
between 1 and d and whose arcs are the (i, j) such that Aij > −∞4. The
graph of A will be denoted by G(A) and the set of its elementary circuits
by C(A).

ii) The weight of the path pth = (i1, · · · , in, in+1) is w(A, pth) :=
∑n

j=1Aijij+1 .

Its length is |pth| := n. Its average weight is aw(A, pth) := w(A,pth)
|pth| .

iii) The max-plus spectral radius of A is ρmax(A) := maxc∈C(A) aw(A, c).

iv) The critical graph of A is obtained from G(A) by keeping only the nodes
and arcs which belong to circuits with average weight ρmax(A). It will be
denoted by Gc(A).

v) The cyclicity of a strongly connected graph is the greatest common divisor
of the length of its circuits. The cyclicity of a general graph is the least
common multiple of the cyclicities of its strongly connected components.
The cyclicity of A is the cyclicity of Gc(A) and is denoted by c(A).

We will need some results from spectral theory. If λ ∈ Rmax and V ∈
Rd

max\{(−∞)d} satisfy the equation A�V = λ�V , we say that λ is an eigenvalue
of A and V is an eigenvector.

For every A ∈ Rd×d
max, the matrix Ã defined by Ãij = Aij − ρmax(A) satisfies

ρmax(Ã) = 0 and A = ρmax(A)�Ã. In the sequel, we will therefore only deal
with the case ρmax(A) = 0.

For every A ∈ Rd×d
max with ρmax(A) ≤ 0, we set:

A+ := �n≥1A
�n.

Proposition 2.2. Let A be a projectively bounded matrix in Rd×d
max. We have

the following.
4Some previous author used the isomorphic graph with weight Aji on arc (i, j) but this

definition has proved to be more convenient in random matrices, see [Mer08]
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i) The spectral radius ρmax(A) is the only eigenvalue of A.

ii) If ρmax(A) = 0 and E is a set of integers that contains exactly one vertex
in each strongly connected component (s.c.c.) of Gc(A), then {A+

.i : i ∈ E}
is a minimal generating set of the eigenspace of A.

iii) If ρmax(A) = 0 and c(A) = 1, then there exists N ∈ N such that, for all
n ≥ N , we have A�n = Q.

Corollary 2.3. If A is a projectively bounded map, then there is an n ∈ N such
that A�n�A�n = ρmax(A�n)�A�n.

Proof. Those results are due to Cuninghame-Green [CG79] (for i)) and to Cohen
et al. [CDQV83, CDQV85] when G(A) is strongly connected. As we already
noticed, the entries of column vectors of a projectively bounded matrix are either
all finite or all equal to −∞. Therefore, up to renumbering the coordinates, A

is of the form A =
(
B −∞
C −∞

)
, with finite matrices B and C.

Therefore, we have

A�

(
X1

X2

)
=
(
B�X1

C�X1

)
and A�n =

(
B�n −∞

C�B�(n−1) −∞

)
and the results hold for projectively bounded A too.

3 Nice semigroups

3.1 Statement

Finite matrices A ∈ Rd×d such that dim(ImA) = d are called strongly regular
(s.r.) by Cuninghame-Green. A semigroup of strongly regular matrices is called
nice.

This section is devoted to the proof of the following theorem, which implies
Theorem 1.1 for semigroups of projective maps defined by a nice semigroup of
matrices.

Theorem 3.1. If S ⊂ Rd×d
max is a nice semigroup of matrices, then all the

elements of S have a common eigenvector.
Moreover ∩A∈SImA is a nonempty convex projectively compact set on which

S is a finite group of affine isometries embedded in the permutation group Sd.

To prove this statement, we first recall or adapt a few results about strongly
regular matrices. This will be the subject of the next subsection. In the fol-
lowing subsection, we show that ∩A∈SIm(A) is a projectively compact convex
invariant set, on which the matrices acts as affine isometries. Finally we con-
clude the proof of theorem 3.1.
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3.2 Strongly regular matrices

To study strongly regular matrices, we will consider max-plus matrices as piece-
wise affine maps. To any mapping τ from {1, · · · d} to itself, let us associate the
set Eτ (A) := {x|∀i,∀j 6= τ(i), Aij + xj < Aiτ(i) + xτ(i)} and the affine map Aτ
defined by (Aτx)i := Aiτ(i) + xτ(i).

For every permutation σ of {1, · · · d}, let us set w(A, σ) :=
∑

iAiσ(i) so that
the max-plus permanent of matrix A reads Perm(A) := maxσ∈Sd

w(A, σ).
The following proposition is obvious:

Proposition 3.2.

1. For any τ , Eτ (A) is an open convex set and A is equal to Aτ on its closure.

2. Rd is the union of the closures of the Eτ (A).

3. A ∈ Rd×d is s.r. if and only if there is a τ ∈ Sd, such that Eτ (A) 6= ∅.

If Eτ (A) 6= ∅, then take an element x in Eτ (A), a permutation σ and sum the
inequality Aiσ(i) +xσ(i) ≤ Aiτ(i) +xτ(i) over i. It proves that w(A, τ) ≥ w(A, σ).
Moreover, if σ 6= τ , then one of the inequalities is strict. Thus τ is the unique
σ ∈ Sd that maximizes w(A, σ). Let us denote this permutation τA and let S(A)
be A(EτA(A)).

Conversely, Butkovic proves in [But00, Theorems 3.3 and 4.1] that if the
permutation σ ∈ Sd that maximizes w(A, σ) is unique, then dim(Im(A)) = d.
This has the following consequence that will be important for our proof.

Lemma 3.3. Let P be a projectively bounded matrix with P�P = P . Then
dim(ImP ) is the number of s.c.c in Gc(P ).

Proof. Let P be a projectively bounded matrix with P�P = P and r be the
number of s.c.c in Gc(P ). Since P�P = P , we deduce from Proposition 2.2 i)
that ρmax(P ) = 0, so that Im(P ) is the eigenspace of P and dim(ImP ) ≤ r,
because of Proposition 2.2ii) .

Conversely, consider a subset E of {1, · · · d} with exactly one element in
each s.c.c of Gc(P ) and the submatrix P̂ of P whose indices are in E. It has
zeros on its diagonal, because P = P+ and P+

ii = 0 whenever i is in Gc(P ).
This says that Gc(P̂ ) has a loop on each node. On the other hand, there is no
other circuit in Gc(P̂ ), because otherwise its nodes would be in the same s.c.c.
of Gc(P ). Therefore, the identity is the only permutation of E with maximal
weight relatively to P̂ . Thus P̂ is strongly regular, and its image has dimension
r. Therefore, there is an open subset U of RE , such that P̂U has dimension r.

Without loss of generality, we assume thatE = {1, · · · r}. For x = (x1, · · · , xd),
we denote (x1, · · · , xr) by x̂. If the xi for i > r are small enough, then we have

ˆP�x = P̂�x̂, thus there is a positive number M , such that P (U×]− 2M,−M [)
has dimension greater than r. This proves that dim(ImP ) ≥ r and concludes
the proof.
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Butkovic also shows that S(A) is the so-called simple image set of A, i.e. the
set of all vectors that have a unique preimage by A. The following proposition
sums up a few basic results on strongly regular matrices that are implicitly
in [But00] but follow easily from our definition.

Proposition 3.4. If A and B are two finite matrices such that A�B is s.r.,
then so are A and B, and we have:

1. (A�B)τA�B
= AτA ◦BτB

2. τA�B = τA ◦ τB

3. Perm(A�B) = Perm(A)�Perm(B)

4. S(A�B) = S(A) ∩AτAS(B)

Proof. Since both A and B are piecewise affine, (A�B)τA�B
is a compostion of

two such maps, say Aτ1 and Bτ2 . But (A�B)τA�B
has rank d, thus so have Aτ1

and Bτ2 . Therefore A and B are s.r. τ1 = τA and τ2 = τB, which proves 1.
Moreover, we have EτA�B

(A�B) = {x ∈ EτB (B)|BτB (x) ∈ EτA(A)}. From this
relation, we deduce 4.

For any s.r. C and any index i, τC(i) is the index of the only coordinate of
CτC (x) that depends on xi. Applying this result to B, A and A�B, we deduce
2 from 1.

For any s.r. matrix C and any x ∈ Rd, the permanent satisfy Perm(C) =∑
i(CτC (x))i−

∑
i xi. Applying this result to B, A and A�B, we deduce 3 from

1.

Corollary 3.5. If all powers of A are s.r., then ρmax(A) = 1
dPerm(A)

Proof. Let n be an integer given by Corollary 2.3. Then, we have A�2n =
ρmax(A)�n�A�n, thus we have

Perm(A�2n) = dρmax(A�n)�Perm(A�n). (3)

But, because of the proposition, Perm(A�2n) = 2nPerm(A) and Perm(A�n) =
nPerm(A), so that Equation (3) becomes nPerm(A) = dρmax(A�n). Since
ρmax(A�n) = nρmax(A), this concludes the proof.

Because of Proposition 3.4, it has the following consequence.

Corollary 3.6. If A and B are two finite matrices in a nice semigroup, then
ρmax(A�B) = ρmax(A)�ρmax(B).

The following result will be crucial for our proof.

Theorem 3.7 (Butkovic [But00]). If P is s.r. and P�2 = P , then ImP =
cl(S(P )) = Fix(P ).
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Proof. In [But00, Theorem 4.2], the same result is stated for s.r. matrices A
with only zeros on the diagonal and such that all circuit of G(A) with length
greater or equal two have negative weight. These matrices are exactly those
with spectral radius equal to 0 and whose critical graph has d s.c.c.

But according to Lemma 3.3, this number of s.c.c. is the dimension of ImA
that is d, because P is s.r.. Since P�2 = P implies ρmax(P ) = 0, the hypotheses
of this Lemma implies those of [But00, Theorem 4.2], which concludes the
proof.

Remark 3.1. The Kleene star of a matrix A is defined as A∗ :=
⊕

n∈NA
�n.

If P�2 = P , then P ∗ = P�0�P In this proof, we noticed that s.r. matrices
P such that P�2 = P , have zeros on the diagonal. There are therefore equal
to their Kleene star. The importance of such matrices has been emphasized
in [Ser08].

In the previous proof, we noticed that Gc(P ) contains all nodes of G(A) and
that ρmax(P ) = 0. Therefore w(P, Id) = 0. But, according to Corollary 3.5
Perm(P ) = dρmax(P ) = 0 thus, τP = Id. Now, PτP = PId which falls down to
PτP = Id once we noticed that all diagonal elements of P are equal to ρmax(P ),
that is to 0.

This gives the following lemma, which will be used extensively in the next
subsection.

Lemma 3.8. If P ∈ Rd×d
max is s.r. and satisfy P�2 = P , then τP is the identity

on {1, · · · d}, and AτP is the identity on Rd

3.3 Proof of the nice case

In this section, we conclude the proof of Theorem 3.1. This proof is split into
two lemmas, each of which corresponds to a statement of the theorem.

To each d × d matrix A we associate the normalized matrix Ã, defined by
Ãij = Aij−ρmax(A). Since A = ρmax(A)�Ã, it defines the same projective map
and has the same image as A. Since

∑
i ÃiτÃ(i) = dρmax(Ã) = 0, the hyperplane

Σ := {x ∈ Rd|
∑

i xi = 0} is closed under the action of the ÃτÃ .

To a semigroup S, we associate S̃ :=
{
Ã|A ∈ S

}
. Because of Corollary 3.6,

if S is nice, then S̃ is also a nice semigroup. Because of Proposition 3.4, so is
{AτA : A ∈ S̃}. It is even a group, as the next lemma states.

Lemma 3.9. If S is a nice semigroup, then S̃ is also a nice semigroup and
{AτA |A ∈ S̃} is a group of affine isometries that preserves Σ.

Proof. The only thing to prove is that the inverse of AτA is in {AτA |A ∈ S̃}.
To see this, apply Corollary 2.3 to A. This gives an n such that A�2n = A�n.

Since A ∈ S̃, A�n ∈ S̃ and the last equation becomes A�2n = A�n. Now,
Lemma 3.8 states that A�n

τ
A�n

= Id, so that A�n−1
τ
A�n−1

= A−1
τA

.

For any F ⊂ Rd and ε > 0 we denote by F ε the ε-neighborhood of F . In
formula:

F ε := {x ∈ Rd|∃y ∈ F‖x− y‖∞ < ε}.
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Lemma 3.10. Let S be a nice semigroup. nd set I := ∩A∈SImA and Σ =
{x ∈ Rd|

∑
i xi = 0}. Then the following assumptions hold.

1. For any P1, P2 ∈ S such that P�2
i = Pi, there is an n such that Q =

(P1�P2)�n satisfy Q�2 = Q and ImP1 ∩ ImP2 = ImQ.

2. I = ∩P∈S̃,P�P=P ImP = ∩A∈Scl(S(A)).

3. The intersection K := ∩A∈SImA ∩ Σ is a nonempty compact convex set.

4. For any ε > 0, there is a matrix C ∈ S such that ImC ⊂ Iε.

Proof.

1. Let n be the integer given by Corollary 2.3 applied to the projective map
defined by P1�P2. Because of Corollary 3.6, ρmax((P1�P2)�n) = 0, so that
(P1�P2)�2n = (P1�P2)�n. Now, apply recursively Proposition 3.4 4., tak-
ing into account lemma 3.8. This says that S((P1�P2)�n) = S(P1)∩S(P2).
Because of Theorem 3.7, it leads to Im((P1�P2)�n) ⊂ ImP1 ∩ ImP2.

On the other hand, each Pi acts as the identity on ImPi, thus both Pi act as
the identity on ImP1∩ImP2 and therefore ImP1∩ImP2 ⊂ Im((P1�P2)�n).

2. First, let us notice that I = ∩A∈S̃ImA. Because of Corollary 2.3,

I = ∩P∈S̃,P�P=P ImP.

But for any P ∈ S̃ such that P�P = P , ImP = cl(S(P )). Since S(A) =
S(Ã) and S(A�n) ⊂ S(A), Corollary 2.3 concludes the proof of this item.

3. For any P ∈ S̃ such that P�P = P , ImP ∩ Σ = cl(S(P )) ∩ Σ is a
nonempty compact convex set. Because of item 1, the intersection of
finitely many projective images of such ImP ∩ Σ is nonempty, thus their
overall intersection is also nonempty. It is convex as the intersection of
convex sets and compact as the intersection of compact sets.

4. Take any P ∈ S̃, such that P�P = P . To any x ∈ Σ\K, we associate
an open neighborhood Ux as follows. According to item 2, there exists a
Px ∈ S̃ such that Px�Px = Px and x /∈ ImPx and we set Ux = Rd\ImPx.

Now the compact set ImP ∩Σ is covered by Kε and the Ux, so that there
a subcovering by Kε and say Ux1 · · ·Uxn . In formula:

ImP ∩ Σ ⊂ Kε ∪
n⋃
i=1

(Rd\ImPxi).

Applying n times the first item of this lemma, we get a matrix Q ∈ S̃,
such that ImQ = ImP ∩

⋂n
i=1 ImPxi . Now, take C ∈ S such that C̃ = Q.

By construction, we have ImC ∩Σ = ImQ ∩Σ ⊂ Kε, and thus ImC ⊂ Iε

10



Lemma 3.11. Let S be a nice semigroup of matrices and set I := ∩A∈SImA
and Σ = {x ∈ Rd|

∑
i xi = 0}. Then, we have the following.

1. Any A ∈ S coincides with AτA on I.

2. I is closed under the action of every A ∈ S and I ∩Σ is closed under the
action of every A ∈ S̃

3. All A ∈ S have a common eigenvector in I.

4. The mapping A 7→ τA embeds the restrictions of the element of S̃ to I
into the permutation group Sd.

Proof.

1. According to Lemma 3.9, there is a B in S̃ such that BτB is the in-
verse of AτA . Because of Lemma 3.10, we have I ⊂ cl(S(B�A)) ⊂
cl(A−1

τA
S(A)) = cl(EτA(A)) thus A coincides with AτA on I.

2. Because of Lemma 3.10, we have I = ∩A∈Scl(S(A)). Fix A ∈ S and apply
Proposition 3.4 4. for any B ∈ S. This gives

I ⊂ ∩B∈Scl(S(A�B)) ⊂ AτA [∩B∈Scl(S(B))] = AτAI,

Therefore I is closed under the action of the inverses of the AτA .

Thanks to Lemma 3.9, it is closed under the action of the AτA themselves.
Together with the previous item, this concludes the proof for the A ∈ S.

Applying this to S̃, we see that I ∩Σ is closed under the action of the Aτ
for every A ∈ S̃.

3. The third item follows from the famous Kakutani theorem, which we recall
now.

Theorem 3.12 (Kakutani [Kak38]). If G is a group of uniformly contin-
uous affine maps on a convex compact subset of a normed vector space,
then all the elements of G have a common fixed point

According to the first two items and to Lemma 3.9, this theorem can be
applied to the restriction of the Ã to K ∩ Σ. The common fixed point of
the normalized matrices is a common eigenvector of the initial matrices.

4. First, let us notice that the function is well defined: τA only depends
on Ã. The restrictions of the element of S̃ to I are affine maps with the
same common fixed point. Up to a change of coordinate, this point can
be taken as the origin and the maps are equal to their linear parts. But
the linear part of AτA is the permutation of coordinates according to τA.

11



4 Projection

In this section, we prove Theorem 1.1. S is a pseudo-primitive semigroup of pro-
jective maps to which we associate the following set S̃ = {A ∈ Rd×d

max|ρmax(A) =
0, A ∈ S}. Notice that S̃ is not necessary a semigroup because the product
of two matrices with zero spectral radius do not necessary have zero spectral
radius. In the previous section it was a semigroup because S was nice.

In this section and in the following one, we omit the notation � to shorten
the formulas: AB means A�B and An means A�n.

Let P be a projectively bounded matrix in S̃ such that P 2 = P . Let E
have one element in each strongly connected component of Gc(P ) and π be the
matrix whose columns are the ones of P with columns numbers in E.

Take A a regular matrix in Rd×d
max. Because of Proposition 2.2, for any i ∈ E,

there are Âij ∈ R such that PAP.i = �j∈EÂij�P.j . In matrices notation, it is
stated

PAπ = πÂ. (4)

The following equations hold for any Ai in Rd×d
max.

PA1PA2 · · ·PAnπ = PA1 · · ·PAn−1πÂn = πÂ1 · · · Ân,

which implies

Im(PA1 · · ·PAnP ) = πIm(Â1 · · · Ân). (5)

Let Ŝ be the semigroup generated by {Â|A ∈ S̃}. The last equation
implies that the images of the elements in Ŝ are mapped by π onto images of
elements of S̃.

The essential lemma to deduce Theorem 1.1 from Theorem 3.1 is the fol-
lowing.

Lemma 4.1.

1. If S is pseudo-primitive, then there is a projectively bounded P ∈ S̃ such
that P 2 = P and dim(ImP ) = minA∈S dim(ImA).

2. For such a P , Ŝ is nice.

Proof.

1. let B ∈ S̃ be such that dim(ImB) = minA∈S̃ dim(ImA). Since S is
pseudo-primitive, there is a projectively bounded C ∈ S̃. Now CB is
projectively bounded and dim(ImCB) = minA∈S̃ dim(ImA). According
to Corollary 2.3, there is a power D of CB, such that P = D̃ satisfies
P 2 = P and

dim(ImP ) = dim(ImD) ≤ dim(ImCB) ≤ min
A∈S̃

dim(ImA)

but because of minimality, the inequality is an equality.
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2. By construction all the entries of the elements of Ŝ are finite. If Ŝ where
not nice, then there would be an element in A ∈ Ŝ with dim(ImA) strictly
less than the cardinality of E, which is also the dimension of ImP accord-
ing to Lemma 3.3 and is equal to minA∈S̃ dim(ImA) by definition. It would
imply the existence of A1 · · ·An in S̃ such that Im(PA1 · · ·PAnP ) =
πIm(Â1 · · · Ân) also has dimension strictly less than minA∈S̃ dim(ImA),
which is a contradiction.

Proof of Theorem 1.1. We apply Lemma 4.1 to get a nice semigroup Ŝ. Then,
Theorem 3.1 gives an x̂ ∈ RE and such that B�x̂ = x̂ for any B ∈ Ŝ. Setting
x0 = πx̂, Equation (4), says that PAx0 = x0 for any A ∈ S̃, that is PAx0 = x0

for any A ∈ S
The next step consists in proving that

π(∩A∈SImÂ) = ∩A∈SImPA. (6)

Equation (5) implies ∩A∈Sπ(ImÂ) = ∩A∈SImPA thus π(∩A∈SImÂ) ⊂ ∩A∈SImPA.
Let us prove the converse inclusion.

For any ε > 0, Lemma 3.10 4. gives a C ∈ Ŝ such that ImC ⊂ [∩A∈SImÂ]ε.
Since π is 1-Lipschitz, we have

∩A∈S ImPA ⊂ ImπC ⊂ (π[∩A∈SImÂ)])ε. (7)

Since π[∩A∈SImÂ) = R�π[∩A∈SImÂ)∩Σ] is closed as the product of R and the
compact space π[∩A∈SImÂ) ∩Σ], letting ε tend to 0 in Equation (7) concludes
the proof of Equation (6).

On ImP , any map PA with A ∈ S is given by some Â ∈ Ŝ which satisfy
Equation (4). The restriction of Â to ∩A∈SImÂ is an element of a finite group,
so that it has finite order. Therefore the restriction of PA to ∩A∈SImPA also
has finite order, which implies that the set of all these restrictions is a group.
It is finite because the set of all possible restrictions of Â ∈ Ŝ is finite.

Finally, the restrictions of the PA to ∩A∈SImPA are isometries, because
they are 1-Lipschitz an so is their inverse.

5 Central limit theorem

In this section, we prove Corollary 1.2.
Let (An)n∈N be a sequence of i.i.d. random regular matrices that take

countably many values such that the semigroup S of projective maps generated
by those values is pseudo-primitive. Let γ be the top Lyapunov exponent of
(An)n∈N.

In [Mer07], we proved that the sequence
(

1√
n

(An · · ·A00− nγ1)
)
n∈N

con-

verges in law to a normal distribution with dimension 1 under the additional
assumption that there is some N ∈ N such that AN · · ·A0 is a constant with
positive probability.
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Theorem 1.1 applied to S gives a projective map P in S and a vector
x0 ∈ Rd whose projective image is a fixed point of PS. Therefore the restric-
tion of P to the orbit of x0 under the action of S is a constant. By definition
of S, there is some n ∈ N such that An · · ·A0 = P with positive probabil-
ity. The proof of [Mer07] can therefore be adapted to prove the convergence of(

1√
n

(An · · ·A0x0 − nγ1)
)
n∈N

, once we noticed that (maxi (An · · ·A0x0 − x0)i)n∈N
is a subadditive sequence and that maxi (Au− x0)i − maxi (u− x0)i only de-
pends on A and u.

Since max-plus maps are nonexpansive, the convergence of
(

1√
n

(An · · ·A0x0 − nγ1)
)
n∈N

implies the convergence of
(

1√
n

(An · · ·A0X0 − nγ1)
)
n∈N

for any initial condi-
tion X0.

Thanks

This article is based on my work as a post-doctoral fellow in the ANR project
MASED (06-JCJC-0069), headed by J. Mairesse. I gratefully thank P. Butkovic
and H. Schneider for inviting me to present these results at the minisymposium
on max-plus agebra they organized at ILAS 2008, as well as S. Sergeev for useful
suggestions.
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