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Abstra
tsAhn, Eunkyung, Kyungpook National University, Daegu, Korea[CT, Thu. 17:45, Room 4℄An extended Lie-Trotter formula and its appli
ationsIn this talk we present a 
lass of Lie-Trotter formulae for Hermitian operators in
luding the formulae derivedby Hiai-Petz and Furuta. A Lie-Trotter formula for weighted Log-Eu
lidean geometri
 means of several positivede�nite operators is given in terms of Sagae-Tanabe geometri
 and spe
tral geometri
 means.(with Sejong Kim and Yongdo Lim)Al Zhour, Zeyad, Zarqa Private University, Zarqa, Jordan[CT, Thu. 11:25, Room 5℄Matrix Results on Weighted Drazin Inverse and Some Appli
ationsIn this paper, we present two general representations of the weighted Drazin inverse Ad,W of an arbitraryre
tangular matrix A ∈ Mm,n related to Moore-Penrose Inverse (MPI) and Krone
ker produ
t of matri
es.These generalizations extend earlier results on the Drazin inverse Ad, group inverse Ag and usual inverse A−1.Furthermore, some ne
essary and su�
ient 
onditions for Drazin and weighted Drazin inverses are given forthe reverse order law (AB)d = BdAd and (AB)d,Z = Bd,RAd,W to hold. Finally, we present the solution ofthe restri
ted singular matrix equations using our new approa
hes.(with Adem Kili
man)Andjeli
, Mili
a, Center for Resear
h on Optimization and Control, Aveiro, Portugal[CT, Fri. 10:35, Room 3℄One upper bound for the largest eigenvalue of the signless Lapla
ianWe prove several 
onje
tures whi
h were generated using the 
omputer program AutoGraphiX (AGX). Newbound on the largest eigenvalue of signless Lapla
ian is given. Moreover, the study of this bound together withsome other already known yields to many examples where the new one gives more pre
ise approximations.(with Slobodan Simi
)Arav, Marina, Georgia State University, Atlanta, GA, USA[CT, Tue. 10:35, Room 3℄Sign Patterns That Require Almost Unique RankA sign pattern matrix is a matrix whose entries are from the set {+,−, 0}. For a real matrix B, sgn(B)is the sign pattern matrix obtained by repla
ing ea
h positive (respe
tively, negative, zero) entry of B by
+ (respe
tively, −, 0). For a sign pattern matrix A, the sign pattern 
lass of A, denoted Q(A), is de�nedas {B : sgn(B) = A }. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A isthe minimum (maximum) of the ranks of the real matri
es in Q(A). Several results 
on
erning sign patterns
A that require almost unique rank, that is to say, the sign patterns A su
h that MR(A) = mr(A) + 1 areestablished. In parti
ular, a 
omplete 
hara
terization of these sign patterns is obtained. Further, the resultson sign patterns that require almost unique rank are extended to sign patterns A for whi
h the spread is
d = MR(A)−mr(A).(with Frank Hall, Zhongshan Li, Assefa Merid, Yubin Gao)3



Ari
ò, Antonio, Dipartimento di Matemati
a - Universitá di Cagliari, Cagliari, Italy[MS3, Fri. 11:00, Room 2℄Signal and Image regularization via antire�e
tive transformThe aim of this talk is to show an e�
ient approa
h for 
omputing a regularized solution via �ltering methods,applied to the spe
tral de
omposition of anti-re�e
tive matri
es. Filtering methods are used in signal and imagerestoration to re
onstru
t an approximation of a signal or image from degraded measurements. Filteringmethods rely on 
omputing a singular value de
omposition or a spe
tral fa
torization of a large stru
turedmatrix. The stru
ture of the matrix depends in part on imposed boundary 
onditions. Antire�e
tive boundary
onditions preserve 
ontinuity of the image and its derivative at the boundary, and have been shown to produ
esuperior re
onstru
tions 
ompared to other 
ommonly used boundary 
onditions, su
h as periodi
, zero andre�e
tive. The purpose of my talk is to analyze the eigenve
tor stru
ture of matri
es that enfor
e antire�e
tiveboundary 
onditions, and the related anti-re�e
tive transform. An e�
ient approa
h to 
omputing �lteredsolutions is proposed, and numeri
al tests are shown to illustrate the performan
e of the dis
ussed methods.Bardsley, John, University of Montana, Missoula, Montana, USA[MS3, Thu. 17:20, Room 2℄Trun
ation Rules for Iterative Deblurring MethodsImage data is often 
olle
ted by a 
harge 
oupled devi
e (CCD) 
amera. CCD 
amera noise is known tobe well-modeled by a Poisson distribution. If this is taken into a

ount, the negative-log of the Poissonlikelihood is the resulting data-�delity fun
tion. We derive, via a Taylor series argument, a weighted leastsquares approximation of the negative-log of the Poisson likelihood fun
tion. The image deblurring algorithmof interest is then applied to the problem of minimizing this weighted least squares fun
tion subje
t to anonnegativity 
onstraint. Our obje
tive in this paper is the development of stopping rules for this algorithm.We present three stopping rules and then test them on data generated using two di�erent true images and ana

urate CCD 
amera noise model. The results indi
ate that ea
h of the three stopping rules is e�e
tive.Barrett, Wayne, Brigham Young University, Provo, Utah[MS1, Thu. 10:35, Room 1℄Minimum rank of edge subdivisions of 
omplete graphs and wheelsThe minimum rank problem for a simple, undire
ted graph G is to determine the minimum rank (or maximumnullity) over all symmetri
 matri
es whose o�-diagonal nonzero pattern 
orresponds to G. For ea
h positiveinteger n greater than three, let Kn be the 
omplete graph on n verti
es and let Wn be the wheel on nverti
es. Given any graph G, an hG is any graph that 
an be obtained from G by subdividing edges; G itselfis 
onsidered to be an hG. We give a general method for �nding the minimum rank of any hKn or hWn. Forea
h �xed Kn (Wn), the problem redu
es to identifying among all hKn (hWn) a �nite 
olle
tion of 
riti
algraphs; we exhibit these expli
itly for small values of n. For ea
h of these we give a sharp upper bound on itsminimum rank by 
onstru
ting a symmetri
 matrix of minimum rank with the 
orre
t zero/nonzero pattern,and a sharp upper bound on the maximum nullity by means of a minimal zero for
ing set. The simplest resultof this type is as follows. Let K∗
4 be the graph on 10 verti
es obtained by subdividing ea
h edge of K4 on
e,and let G be an hK4. Then

M(G) =

{
3 if G is not an hK∗

4

4 if G is an hK∗
4 .where M(G) is the maximum nullity of G. All of our results are �eld independent.(with Ryan Bow
utt, Mark Cutler, Seth Gibelyou, and Kayla Owens)4



Barría, José, Santa Clara University, Santa Clara, U.S.A.[CT, Fri. 16:20, Room 4℄The strong 
losure of the similarity orbit for a 
lass of pairs of �nite rank operatorsFor operators A and B on a Hilbert spa
e H the similarity orbit S(A,B) is the set of all pairs of the form
(W−1AW,W−1BW ), whereW is an invertible operator onH. We des
ribe the 
losure of S(A,B) in the strongoperator topology, for �nite rank operators A and B whose ranges have interse
tion equal to the subspa
e {0}.Baur, Ulrike, Chemnitz University of Te
hnology, Chemnitz, Germany[MS5, Fri. 15:30, Room 2℄Model Redu
tion for unstable Systems based on Hierar
hi
al Matrix Arithmeti
We 
onsider linear time-invariant (LTI) systems of the following form

Σ :

{
ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0,with A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

p×n arising, e.g., from the dis
retization and linearization of paraboli
PDEs. We will assume that the system Σ is large-s
ale with nThu.18 : 35m, p and that the system is unstable,satisfying
Λ(A) ∩C

+ 6= ∅, Λ(A) ∩ R = ∅.We further allow the system matrix A to be dense, provided that a data-sparse representation exists. Toredu
e the dimension of the system Σ, we apply an approa
h based on the 
ontrollability and observabilityGramians of Σ. The numeri
al solution of these Gramians is obtained by solving two algebrai
 Bernoulli andtwo Lyapunov equations. As standard methods for the solution of matrix equations are of limited use forlarge-s
ale systems, we investigate approa
hes based on the matrix sign fun
tion method. To make this iter-ative method appli
able in the large-s
ale setting, we in
orporate stru
tural information from the underlyingPDE model into the approa
h. By using data-sparse matrix approximations, hierar
hi
al matrix formats, andthe 
orresponding formatted arithmeti
 we obtain an e�
ient solver having linear-polylogarithmi
 
omplex-ity. On
e the Gramians are 
omputed, a redu
ed-order system 
an be obtained applying the usual balan
edtrun
ation method.Beattie, Christopher, Virginia Te
h, Bla
ksburg, VA, USA[MS5, Thu. 11:25, Room 2℄Interpolatory Proje
tion Methods for Parameterized Model Redu
tionDynami
al systems are the basi
 framework for modeling and 
ontrol of an enormous variety of 
omplexsystems. Dire
t numeri
al simulation of the asso
iated models has been one of the few means available whengoals in
lude a

urate predi
tion or 
ontrol of 
omplex physi
al phenomena. However, the ever in
reasingneed for improved a

ura
y requires the in
lusion of ever more detail in the modeling stage, leading inevitablyto ever larger-s
ale, ever more 
omplex dynami
al systems Complex systems invariably are parameterized byquantities that will des
ribe parti
ular instan
es of systems of interest. Simulations in su
h large-s
ale settingsoften must be performed with a variety of di�erent parameter values and these tasks 
an make unmanageablylarge demands on 
omputational resour
es; this is the main motivation for model redu
tion, whi
h has asits goal produ
tion of a mu
h lower dimensional system having the same input/output 
hara
teristi
s as theoriginal system. Rational Krylov subspa
es are often 
apable of providing nearly optimal approximatingsubspa
es for model redu
tion. A framework for model redu
tion is presented that in
ludes rational Krylov-based methods as a spe
ial 
ase. This broader framework allows retention of spe
ial stru
ture in the redu
edorder models that is often en
oded in the system parameterization su
h as symmetry, se
ond order stru
ture,internal delays, and in�nite dimensional subsystems. 5



Bella, Tom, University of Conne
ti
ut, Storrs, USA[MS2, Fri. 11:00, Room 1℄ Eigenproblems for quasiseparable matri
esWe 
onsider eigenproblems for the 
lass of quasiseparable matri
es, or matri
es whose o��diagonal blo
ks arelow rank. Classi
al eigenvalue algorithms, su
h as QR iterations and divide and 
onquer, make use of thisvery property of quasiseparability. We additionally give 
lassi�
ations of Hessenberg�quasiseparable matri
esin terms of the re
urren
e relations of related systems of polynomials.(with Yuli Eidelman, Israel Gohberg and Vadim Olshevsky)Bengo
hea, Gabriel, Universidad Autónoma de la Ciudad de Méxi
o, Méxi
o D.F.[CT, Fri. 11:00, Room 4℄Duality in the Hopf Algebra of multivariate polynomialsThe C-ve
tor spa
e of polynomials in one variable with 
omplex 
oe�
ients, whi
h owns a Hopf algebrastru
ture, has a dual spa
e generated by the one variable Taylor's fun
tionals. In the 
ase of two variables,we 
an observe that the dual spa
e is generated by the Taylor's fun
tionals in one variable applied to ea
hvariable separately. With this theory we 
an 
al
ulate residues from polynomials of separable variables. Thistheory 
an be easily extended to the 
ase of n-variables. There are other theories that develop the residue
al
ulus using Gorenstein algebra.(with L. Verde-Star)Benner, Peter, TU Chemnitz, Fakultät für Mathematik, Chemnitz, Germany[MS5, Fri. 16:20, Room 2℄Balan
ing-Related Model Redu
tion for Large-S
ale Unstable SystemsModel redu
tion is an in
reasingly important tool in analysis and simulation of dynami
al systems, 
ontroldesign, 
ir
uit simulation, stru
tural dynami
s, CFD, et
. In the past de
ades many approa
hes have beendeveloped for redu
ing the order of a given model. Here, we will fo
us on balan
ing-related model redu
tionte
hniques that have been developed sin
e the early 80ies in 
ontrol theory. The mostly used te
hnique ofbalan
ed trun
ation (BT) [3℄ applies to stable systems only. But there exist several related te
hniques that
an be applied to unstable systems as well. We are interested in te
hniques that 
an be extended to large-s
alesystems with sparse system matri
es whi
h arise, e.g., in the 
ontext of 
ontrol problems for instationarypartial di�erential equations (PDEs). Semi-dis
retization of su
h problems leads to linear, time-invariant(LTI) systems of the form
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn. Here, n is the order of the system and
x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm are the state, output and input of the system, respe
tively. We assume Ato be large and sparse and nThu.18 : 35m, p. Applying the Lapla
e transform to (1) (assuming x(0) = 0), weobtain

Y (s) = (C(sI −A)−1B +D)U(s) =: G(s)U(s),where s is the Lapla
e variable, Y, U are the Lapla
e transforms of y, u, and G is 
alled the transfer fun
tionmatrix (TFM) of (1). The TFM des
ribes the input-output mapping of the system. The model redu
tionproblem 
onsists of �nding a redu
ed-order LTI system,
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2)6



of order r, r ≪ n, with the same number of inputs m, the same number of outputs p, and asso
iated TFM
Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂, so that for the same input fun
tion u ∈ L2(0,∞; Rm), we have y(t) ≈ ŷ(t) whi
h
an be a
hieved if G ≈ Ĝ in an appropriate measure. If all eigenvalues of A are 
ontained in the left half
omplex plane, i.e., [1) is stable, BT is a viable model redu
tion te
hnique. It is based on balan
ing the
ontrollability and observability Gramians Wc, Wo of the system (1) given as the solutions of the Lyapunovequations

AWc +WcA
T +BBT = 0, ATWo +WoA+ CTC = 0. (3)Based on Wc,Wo or Cholesky fa
tors thereof, matri
es V,W ∈ Rn×r 
an be 
omputed so that with

Â := WTAV, B̂ := WTB, Ĉ := CV, D̂ = D,the redu
ed-order TFM satis�es
σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2

n∑

k=r+1

σk, (4)where σ1 ≥ . . . ≥ σn ≥ 0 are the Hankel singular values of the system, given as the square roots of theeigenvalues of WcWo. The key 
omputational step in BT is the solution of the Lyapunov equations (3). Inre
ent years, a lot of e�ort has been devoted to the solution of these Lyapunov equations in the large andsparse 
ase 
onsidered here. Nowadays, BT 
an be applied to systems of order up to n = 106, see, e.g., [1, 2℄.Less attention has been payed so far to unstable systems, i.e., systems where A may have eigenvalues withnonnegative real part. Su
h systems arise, e.g., from semi-dis
retizing paraboli
 PDEs with unstable rea
tiveterms. We will review methods related to BT that 
an be applied in this situation and dis
uss how thesemethods 
an also be implemented in order to be
ome appli
able to large-s
ale problems. The basi
 idea ofthese methods is to repla
e the Gramians Wc and Wo from (3) by other positive semide�nite matri
es thatare asso
iated to (1) and to employ the algorithmi
 advan
es for BT also in the resulting model redu
tionalgorithms.Referen
es[1℄ P. Benner, V. Mehrmann, and D. Sorensen, editors. Dimension Redu
tion of Large-S
ale Systems, vol-ume 45 of Le
ture Notes in Computational S
ien
e and Engineering. Springer-Verlag, Berlin/Heidelberg,Germany, 2005.[2℄ J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl., 24(1):260�280, 2002.[3℄ B. C. Moore. Prin
ipal 
omponent analysis in linear systems: Controllability, observability, and modelredu
tion. IEEE Trans. Automat. Control, AC-26:17�32, 1981.Berman, Avi, Te
hnion, Haifa, Israel[MS1, Wed. 12:15, Room 1℄The Colin de Verdière Parameter- a progress report***
7



Bini, Dario, Dipartimento di Matemati
a, Universitá di Pisa, Pisa, Italy[MS6, Tue. 10:35, Room 1℄Fast solution of a 
ertain Ri

ati Equation through Cau
hy-like matri
esWe 
onsider a spe
ial instan
e of the algebrai
 Ri

ati equation XCX − XE − AX + B = 0 en
ounteredin transport theory, where the n × n matrix 
oe�
ients A,B,C,E are rank stru
tured matri
es. We presentsome quadrati
ally 
onvergent iterations for solving this matrix equation based on Newton's method, Cy
li
Redu
tion and the Stru
ture-preserving Doubling Algorithm. It is shown that the intermediate matri
esgenerated by these iterations are Cau
hy-like with respe
t to a suitable singular operator and their displa
ementstru
ture is expli
itly determined. Using the GKO algorithm enables us to perform ea
h iteration step in O(n2)arithmeti
 operations. In 
riti
al 
ases where 
onvergen
e turns to linear, we present an adaptation of the shiftte
hnique whi
h allows to get rid of the singularity. Numeri
al experiments and 
omparisons whi
h 
on�rmthe e�e
tiveness of the new approa
h are reported.(with Beatri
e Meini and Federi
o Poloni)Boett
her, Albre
ht, TU Chemnitz, Chemnitz, Germany[Plenary, Mon. 15:30�16:25℄Toeplitz matri
es with Fisher-Hartwig symbolsAsymptoti
 properties of large Toeplitz matri
es are best understood if the matrix is 
onstituted by the Fourier
oe�
ients of a smooth fun
tion without zeros on the unit 
ir
le and with winding number zero. If at least oneof these 
onditions on the generating fun
tion is violated, one speaks of Toeplitz matri
es with Fisher-Hartwigsymbols. The talk is intended as an introdu
tion to the realm of Toeplitz matri
es with Fisher-Hartwig symbolsfor a broad audien
e. We show that several highly interesting and therefore very popular Toeplitz matri
esare just matri
es with a Fisher-Hartwig symbol and that many questions on general Toeplitz matri
es, forexample, the asymptoti
s of the extremal eigenvalues, are nothing but spe
i�
 problems for matri
es withFisher-Hartwig symbols. We embark on both 
lassi
al and re
ent results 
on
erning the asymptoti
 behaviorof determinants, 
ondition numbers, eigenvalues, and eigenve
tors as the matrix dimension goes to in�nity.Boimond, Jean-Louis, LISA - University of Angers, Angers, Fran
e[MS7, Tue. 16:55, Room 3℄On Steady State Controller in Min-Plus AlgebraSyn
hronization phenomena o

urring in systems where dynami
 behavior is represented by a �ow of �uidare well modeled by 
ontinuous (min,+)-linear systems. A feedba
k 
ontroller design method is proposedfor su
h systems in order that the system output asymptoti
ally behaves like polynomial input. Su
h a
ontroller obje
tive is well-known in the 
onventional linear systems theory. Indeed, the steady-state a

ura
yof 
onventional linear systems is 
lassi�ed a

ording to their �nal responses to polynomial inputs su
h as steps,ramps, and parabolas. The ability of the system to asymptoti
ally tra
k polynomial inputs is given by thehighest degree, k, of the polynomial for whi
h the error between system output and referen
e input is �nitebut nonzero. We 
all the system type k to identify this polynomial degree. For example, a type 1 system has�nite, nonzero error to a �rst-degree polynomial input (ramp).An analogous de�nition of system type k is given for 
ontinuous (min,+)-linear systems and leads to simple
onditions as in 
onventional system theory. In addition to the 
onditions that the resulting 
ontroller mustsatisfy, we look for the greatest 
ontroller to satisfy the just in time 
riterion. For a manufa
turing system, su
han obje
tive allows the releasing of raw parts at the latest dates su
h that the 
ustomer demand is satis�ed.(with S. Lahaye) 8



Bourgeois, Gerald, Fa
ulté de Luminy, Marseille, Fran
e[CT, Mon. 17:20, Room 4℄About the logarithm fun
tion over the matri
esWe prove the following results: let x, y be (n, n) 
omplex matri
es su
h that x, y, xy have no eigenvalue in
]−∞, 0] and log(xy) = log(x)+ log(y). If n = 2, or if n ≥ 3 and x, y are simultaneously triangularizable, then
x, y 
ommute. In both 
ases we redu
e the problem to a result in 
omplex analysis.Introdu
tion Z∗ refers to the non-zero integers.Let u be a 
omplex number. Then Re(u), Im(u) refer to the real and imaginary parts of u; if u /∈] −∞, 0]then arg(u) ∈]− π, π[ refers to its prin
ipal argument.Basi
 fa
ts about the logarithm. Let x be a 
omplex (n, n) matrix whi
h hasn't any eigenvalue in ]−∞, 0].Then log(x), the x-prin
ipal logarithm, is the (n, n) matrix a su
h that:
ea = x and the eigenvalues of a lie in the strip {z ∈ C : Im(z) ∈]− π, π[}.
log(x) always exists and is unique; moreover log(x) may be written as a polynomial in x.Now we 
onsider two matri
es x, y whi
h have no eigenvalue in ]−∞, 0]:
• If x, y 
ommute then x, y are simultaneously triangularizable and we may asso
iate pairwise their eigenvalues
(λj), (µj); if moreover ∀j, |arg(λj) + arg(µj)| < π, then log(xy) = log(x) + log(y).
• Conversely if xy has no eigenvalue in ] −∞, 0] and log(xy) = log(x) + log(y) then do x, y 
ommute ? Wewill prove that it's true for n = 2 (theorem 1) or, for all n, if x, y are simultaneously triangularizable (theorem2). But if n > 2, then we don't know the answer in the general 
ase.Dimension 2 Prin
iple of the proof. The proof is based on the two next propositions. The �rst one is a
orollary of a Morinaga and Nono's result; the se
ond is a te
hni
al result using 
omplex analysis.Proposition 1. Let U = {u ∈ C∗ : eu = 1 + u}.Let a, b be two (2, 2) 
omplex matri
es su
h that ea+b = eaeb and ab 6= ba; let spectrum(a) = {λ1, λ2}, spectrum(b) =
{µ1, µ2}.Then one of the three following item is ful�lled:(1) λ1 − λ2 ∈ 2iπZ

∗ and µ1 − µ2 ∈ 2iπZ
∗.(2) One of the following 
omplex numbers ±(λ1 − λ2), ±(µ1 − µ2) is in U .(3) a and b are simultaneously similar to (

λ 0
0 λ+ u

) and (
µ+ v 1

0 µ

) with λ, µ ∈ C, u, v ∈ C∗, u 6= v and
eu − 1

u
=
ev − 1

v
6= 0.Proposition 2. Let u, v be two distin
t, non zero 
omplex numbers su
h that eu − 1

u
=

ev − 1

v
6= 0,

|Im(u)| < 2π, |Im(v)| < 2π.Then ne
essarily |Im(u)− Im(v)| ≥ 2π.Theorem 1. Let x, y be two (2, 2) 
omplex matri
es su
h that x, y, xy haven't any eigenvalue in ]−∞, 0] and
log(xy) = log(x) + log(y). Then x, y 
ommute.Dimension n I refers to the identity matrix of dimension n− 1. Let φ be the holomorphi
 fun
tion: φ : z →
ez − 1

z
, φ(0) = 1.We'll use the following to prove our se
ond main result.Proposition 3. Let a =

(
a0 u
0 α

)
, b =

(
b0 v
0 β

) be two 
omplex (n, n) matri
es where α, β are 
om-plex numbers and a0, b0 are (n − 1, n − 1) 
omplex matri
es whi
h 
ommute; let spectrum(a0 − αI) =
(αi)i≤n−1, spectrum(b0 − βI) = (βi)i≤n−1. If ea+b = eaeb and ab 6= ba then one of the following itemmust be satis�ed:(4) ∃i : βi 6= 0 and φ(αi + βi) = φ(αi).(5) ∃i : αi 6= 0, βi = 0 and φ(−αi) = 1.Theorem 2. Let x, y be (n, n) 
omplex matri
es su
h that x, y, xy haven't any eigenvalue in ] −∞, 0] and
log(xy) = log(x) + log(y). If moreover x, y are simultaneously triangularizable then xy = yx.9



Con
lusion When n = 2, we know how to 
hara
terize the 
omplex (n, n) matri
es a, b su
h that ab 6= baand ea+b = eaeb; it allowed us to bring ba
k our problem to a result of 
omplex analysis. Unfortunately, if
n ≥ 3, the 
lassi�
ation of su
h matri
es is unknown. For this reason we 
an't prove, in this last 
ase, thehoped result without supplementary assumption.Brualdi, Ri
hard A., University of Wis
onsin - Madison, Madison, USA[MS1, Wed. 10:35, Room 1℄A Conje
ture in Combinatorial Matrix TheoryIn this talk I will dis
uss an old 
onje
ture of mine and Bolian Liu, and the re
ent progress on this 
onje
ture.Bru, Rafael, Univ. Polité
ni
a, Valen
ia, Spain[CT, Mon. 18:10, Room 3℄ On some 
lasses of H-matri
esThis talk deals with some 
lasses of H-matri
es whi
h are sub
lasses of the type of invertible H-matri
es, thatis H-matri
es with invertible 
omparison matrix. In parti
ular new 
hara
terization of S-SDD matri
es and
α-matri
es are given. Properties of those 
lasses of H-matri
es and Doubly Diagonally Dominant matri
es are
onsidered.(with Ljiljana Cvetkovi¢, Vladimir Kosti¢ and Fran
is
o Pedro
he)Bueno Ca
hadina, María Isabel, The University of California at Santa Barbara, Santa Barbara, USA[CT, Tue. 17:20, Room 4℄Algorithms for 
omputing the Geronimus TransformationA moni
 Ja
obi matrix is a tridiagonal matrix whi
h 
ontains the parameters of the three-term re
urren
erelation satis�ed by the sequen
e of moni
 polynomials orthogonal with respe
t to a measure. The basi
Geronimus transformation with shift α transforms the moni
 Ja
obi matrix asso
iated with a measure dµ intothe moni
 Ja
obi matrix asso
iated with dµ/(x − α) + Cδ(x − α), for some 
onstant C. This transforma-tion is known for its numerous appli
ations to quantum me
hani
s, bispe
tral transformation in orthogonalpolynomials, integrable systems, and other areas of mathemati
s and mathemati
al physi
s. In this talk weexamine the algorithms available to 
ompute this transformation and we propose a new algorithm, whi
h ismore a

urate than the other algorithms when C 6= 0. We also estimate its forward errors by 
omputing the
ondition number of the problem. We will �nally analyze the parti
ular 
ase when C = 0.Butkovi
, Peter, University of Birmingham, Birmingham, United Kingdom[MS7, Tue. 18:10, Room 3℄On the permuted max-algebrai
 eigenve
tor problemLet a ⊕ b = max(a, b), a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞} and extend these operations to matri
esand ve
tors as in 
onventional linear algebra. The following max-algebrai
 eigenve
tor problem has beenintensively studied in the past: Given A ∈ R

n×n
, �nd all x ∈ R

n
, x 6= (−∞, ...,−∞)T ( eigenve
tors) su
h that

A⊗ x = λ⊗ x for some λ ∈ R. In our talk we deal with the permuted eigenve
tor problem: Given A ∈ R
n×nand x ∈ R

n
, is it possible to permute the 
omponents of x so that the arising ve
tor x′ is a (max-algebrai
)eigenve
tor of A? This problem 
an be proved to be NP -
omplete using a polynomial transformation fromBANDWIDTH. As a by-produ
t the following permuted max-linear system problem 
an also be shown NP-
omplete: Given A ∈ R

m×n and b ∈ R
m
, is it possible to permute the 
omponents of b so that for the arisingve
tor b′ the system A⊗ x = b′ has a solution? Both problems 
an be solved in polynomial time when n doesnot ex
eed 3. 10



Carriegos, Miguel, Universidad de León, León, Spain[CT, Tue. 11:50, Room 4℄ Rea
hability of regular swit
hed linear systemsSwit
hed linear systems belong to a spe
ial 
lass of hybrid 
ontrol systems whi
h 
omprises a 
olle
tion ofsubsystems des
ribed by linear dynami
s (di�erential/di�eren
e equations) together with a swit
hing rule thatspe
i�es the swit
hing between the subsystems. Su
h systems 
an be used to des
ribe a wide range of physi
aland engineering problems in pra
ti
e. On the other hand, swit
hed linear systems have been attra
ting mu
hattention in the re
ent past years be
ause of the arising problems are not only a
ademi
ally 
hallenging but alsoof pra
ti
al importan
e. In this talk we 
onsider regular swit
hed sequential linear systems ; that is, sequentialswit
hed linear systems
Γ : x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t)where the swit
hing signals σ(0)σ(1)σ(2)... ∈ Σ∗ belong to a regular language LΓ ⊆ Σ∗ of admissible sequen
esof 
ommands of system Γ. This is a
tually equivalent to saying that swit
hing signals are governed by a �niteautomaton. We study the notion of rea
hability in terms of families of matri
es Aσ(−) and Bσ(−) by usinglinear algebra te
hniques.Castro-González, Nieves, Universidad Polité
ni
a de Madrid, Madrid, Spain[CT, Fri. 11:25, Room 4℄Representations for the generalized Drazin inverse of additive perturbationsLet B be a unital 
omplex Bana
h algebra. An element a ∈ B is said to have a generalized Drazin inverse ifthere exists x ∈ B su
h that

xa = ax, x = ax2, a− a2x is quasinilpotent.In this 
ase, the generalized Drazin inverse of a is unique and is denoted by aD. If in the previous de�nition
a − a2x is in fa
t nilpotent then aD is the 
onventional Drazin inverse of a. It is well known that if a and
b have generalized Drazin inverse and ab = ba = 0, then (a + b)D = aD + bD. This result was generalizedin [Djordjevi¢ and Wei, Additive result for the generalized Drazin inverse, J. Austral. Math. So
. 73 (2002)115-125℄ under the one side 
ondition ab = 0. Re
ently, in [Castro and Koliha, New Additive results for the
g-Drazin inverse, Pro
. Roy. So
. Edinburgh Se
t. A 134 (2005) 657-666℄, [Cvetkovi¢-Ili¢ et al., Additiveresults for the generalized Drazin inverse in a Bana
h algebra, Linear Algebra Appl. 418 (2006) 53-61℄, weaker
onditions were given under whi
h (a+ b)D 
ould be expli
itly expressed in terms of a, aD, b, and bD.In this paper we study the generalized Drazin inverse of the sum a + b, where the perturbation b is aquasinilpotent element, and we obtain a representation for (a + b)D under new 
onditions whi
h relax the
ondition ab = 0. Our approa
h is based on a representation for the resolvent of a 2× 2 matrix with entries ina Bana
h algebra, whi
h we provide, and the Laurent expansion of the resolvent in terms of the generalizedDrazin inverse. Our results 
an be applied to obtain di�erent representations of the generalized Drazin inverseof blo
k matri
es M =

(
A C
B D

), under 
ertain 
onditions, in terms of the individual blo
ks. In parti
ular,we 
an write M as the sum of a blo
k triangular matrix and a nilpotent matrix and apply the additiveperturbation result given to obtain a representation for MD. It extends the result of Meyer and Rose for theDrazin inverse of a blo
k triangular matrix. Finally, we present a numeri
al example for the Drazin inverse of
2× 2 blo
k matri
es over the 
omplex numbers.This resear
h is partly supported by Proje
t MTM2007-67232, �Ministerio de Edu
a
ión y Cien
ia" of Spain.(with M. F. Martínez-Serrano)
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Catral, Minerva, University of Vi
toria, Vi
toria, Canada[MS8, Mon. 18:35, Room 1℄The Kemeny Constant in Finite Homogeneous Ergodi
 Markov ChainsFor a �nite homogeneous ergodi
 Markov 
hain, the Kemeny 
onstant is an interesting quantity whi
h isde�ned in terms of the mean �rst passage times and the stationary distribution ve
tor. A formula in terms ofgroup inverses and inverses of asso
iated M-matri
es is presented and perturbation results are derived.Cheng, Wei, National University of Defense Te
hnology, Changsha, P.R. China[CT, Fri. 17:10, Room 4℄One Type of Inverse Eigenvalue Problems in Quaternioni
 Quantum Me
hani
sThe inverse eigenvalue problems studied in this paper is investigated in quaternioi
 quantum me
hani
s.Su�
ient and ne
essary 
onditions for the existen
e of the solutions are given. The 
onstrained least-squaresproblems are also studied, and the su�
ient and ne
essary 
onditions for the existen
e of the solutions aregiven. At last two numeri
al algorithm are given.(with Liang-gui Feng)Corral, Cristina, Universidad Polité
ni
a de Valen
ia, Valen
ia, Spain[CT, Mon. 11:10, Room 3℄ On S
hur 
omplements of H-matri
esIn [1℄ we have partitioned the H-matri
es set in three 
lasses: the invertible 
lass, the singular 
lass andthe mixed 
lass, depending on the non-singularity of the matri
es in the equimodular set. It is well-knownthat the S
hur 
omplements of an H-matrix in the invertible 
lass all are H-matri
es (see [2℄). In this paperwe study the S
hur 
omplements of the H-matri
es in the mixed and singular 
lasses, obtaining even, under
ertain 
onditions, H-matri
es in the invertible 
lass.Referen
es[1℄ R. Bru, C. Corral, I. Gimenez and J. Mas. On general H-matri
es. Lin. Alg. Appl. (2007),doi:10.1016/j.laa.2007.10.030[2℄ J. Liu and Y. Huang. Some properties on S
hur 
omplements of H-matri
es and diagonally dominantmatri
es. Lin. Alg. Appl., 389 (2004), 365�380.(with R. Bru, I. Giménez, J. Mas)Cortés, Vanesa, Universidad de Zaragoza, Zaragoza, Spain[CT, Fri. 15:30, Room 3℄Some properties of the 
lass sign regular matri
es and its sub
lassesAn m× n matrix is 
alled sign regular with signature ε if, for ea
h k ≤ min{m,n}, all its k × k minors havethe same sign or are zero. The 
ommon sign may di�er for di�erent k: the 
orresponding sequen
e of signsprovides the signature of the sign regular matrix. These matri
es play an important role many �elds, su
has Statisti
s, Approximation Theory or Computer Aided Geometri
 Design. In fa
t, nonsingular sign regularmatri
es are 
hara
terizated as variation-diminishing linear maps: the maximum number of sign 
hanges inthe 
onse
utive 
omponents of the image of a nonzero ve
tor is bounded above by the minimum number of sign
hanges in the 
onse
utive 
omponents of the ve
tor. We study several properties of these matri
es, fo
usingour analysis on some sublasses of sign regular matri
es with 
ertain parti
ular signatures.(with J. M. Peña) 12



Costa, Liliana, Centre for Resear
h on Optimization and Control, Aveiro, Portugal[CT, Mon. 10:45, Room 4℄ A
y
li
 Birkho� PolytopeA real square matrix with nonnegative entries and all rows and 
olumns sums equal to one is said to bedoubly sto
hasti
. This denomination is asso
iated to probability distributions and it is amazing the diversityof bran
hes of mathemati
s in whi
h doubly sto
hasti
 matri
es arise (geometry, 
ombinatori
s, optimizationtheory, graph theory and statisti
s). Doubly sto
hasti
 matri
es have been studied quite extensively, espe
iallyin their relation with the van der Waerden 
onje
ture for the permanent. In 1946, Birkho� published aremarkable result asserting that a matrix in the polytope of n × n nonnegative doubly sto
hasti
 matri
es,
Ωn , is a vertex if and only if it is a permutation matrix . In fa
t, Ωn is the 
onvex hull of all permutationmatri
es of order n. The Birkho� polytope Ωn is also known as transportation polytope or doubly sto
hasti
matri
es polytope. Re
ently Dahl dis
ussed the sub
lass of Ωn 
onsisting of the tridiagonal doubly sto
hasti
matri
es and the 
orresponding subpolytope

Ωt
n = {A ∈ Ωn : A is tridiagonal},the so-
alled tridiagonal Birkho� polytope, and studied the fa
ial stru
ture of Ωt

n. In this talk we present aninterpretation of verti
es and edges of the a
y
li
 Birkho� polytope, Tn = Ωn(T ), where T is a given tree, interms of graph theory.(with C. M. da Fonse
a and Enide Andrade Martins)Cox, Steve, Ri
e University, Houston, TX, USA[MS2, Thu. 17:20, Room 1℄Eigen-redu
tion of Large S
ale Neuronal NetworksThe modest pyramidal neuron has over 100 bran
hes with tens of synapses per bran
h. Partitioning ea
hbran
h into 3 
ompartments, with ea
h 
ompartment 
arrying say 3 membrane 
urrents, yields at least 20variables per bran
h and so, in total, a nonlinear dynami
al system of roughly 2000 equations. We linearizethis system to, x'=Ax+Bu, y=Cx, where B permits synapti
 input into ea
h 
ompartment and C observesonly the soma potential. We redu
e this system by retaining the dominant singular dire
tions of the asso
iated
ontrollability and observability Grammians. We evaluate the error in soma potential between the full andredu
ed models for a number of true morphologies over a broad (in spa
e and time) 
lass of synapti
 inputpatterns, and �nd that redu
ed systems of dimension less then 10 a

urately re�e
t the full quasi-a
tivedynami
s. This savings will permit, for the �rst time, one to simulate large networks of biophysi
ally a

urate
ells over realisti
 time spans.(with Tony Kellems, Derri
k Roos and Nan Xiao)Cravo, Glória, University of Madeira and CELC, Fun
hal, Portugal[CT, Tue. 10:35, Room 4℄Controllability of Matri
es with Pres
ribed Blo
ksLet F be a �eld and let n, p1, . . . , pk be positive integers su
h that n = p1 + · · ·+ pk. Let
(C1, C2) =







C1,1 · · · C1,k−1... ...
Ck−1,1 · · · Ck−1,k−1


 ,




C1,k...
Ck−1,k





where the blo
ks Ci,j are of type pi× pj , i ∈ {1, . . . , k− 1}, j ∈ {1, . . . , k}.We study the possibility of (C1, C2)being 
ompletely 
ontrollable, when some of its blo
ks are �xed and the others vary.13



Our main results analyse the following 
ases:(i) All the blo
ks Ci,j are of the same size;(ii) The blo
ks Ci,j are not ne
essarily of the same size and k = 3.We also des
ribe the possible 
hara
teristi
 polynomial of a matrix of the form
C =



C1,1 · · · C1,k... ...
Ck,1 · · · Ck,k


when some of its blo
ks are pres
ribed and the others are free.da Cruz, Henrique F., U.B.I, Covilhã, Portugal[CT, Thu. 18:10, Room 4℄On the matri
es that preserve the value of the immanant of the upper triangular matri
esLet χ be an irredu
ible 
hara
ter of the symmetri
 group of degree n, let Mn(F ) be the linear spa
e of

n-square matri
es with elements in F , let TU
n (F ) be the subset ofMn(F ) of the upper triangular matri
es andlet dχ be the immanant asso
iated with χ. We denote by T (Sn, χ) the set of all A ∈Mn(F ), su
h
dχ(AX) = dχ(X),for all X ∈ TU

n (F ). In [1℄ it was proved that if χ is self asso
iated or χ = 1, the prin
ipal 
hara
ter, then
T (Sn, χ) =

⋃

σ∈Sn,χ(σ) 6=0

{P (σ)R : R ∈ TU
n (F ), det(R) =

χ(id)

χ(σ)
}.If χ is not self asso
iated the problem remains unsolve. In this talk we present a 
omplete des
ription of

T (Sn, χ) with χ = (n− 1, 1) or χ = (n− 2, 2).Referen
es[1℄ R. Fernandes, Matri
es that preserve the value of the generalized matrix fun
tion of the upper triangularmatri
es, Linear Algebra Appl. 401 (2005), 47-65.(with Rosário Fernandes)Damm, Tobias, TU Kaiserslautern, Kaiserslautern, Germany[MS5, Fri. 15:55, Room 2℄Algebrai
 Gramians and Model Redu
tion for Di�erent System ClassesModel order redu
tion by balan
ed trun
ation is one of the best-known methods for linear systems. It ismotivated by the use of energy fun
tionals, preserves stability and provides stri
t bounds for the approximationerror. The 
omputational bottlene
k of this method lies in the solution of a pair of dual Lyapunov equationsto obtain the 
ontrollability and the observability Gramian, but nowadays there are e�
ient methods whi
hwork for large-s
ale systems as well. These advantages motivate the attempt to apply balan
ed trun
ationalso to other 
lasses of systems. For example, there is an immediate way to generalize the idea to sto
hasti
linear systems, where one has to 
onsider generalized versions of Lyapunov equations. Similarly, one 
an de�neenergy fun
tionals and Gramians for nonlinear systems and try to use them for order redu
tion. In general,however, these Gramians are very 
ompli
ated and pra
ti
ally not available. As an approximation, one may
14



use algebrai
 Gramians, whi
h again are solutions of 
ertain generalized Lyapunov equations and whi
h givebounds for the energy fun
tionals. This approa
h has been taken e.g. for bilinear systems of the form
ẋ = Ax+

k∑

j=1

Njxuj +Bu ,

y = Cx ,whi
h arise e.g. from the dis
retization of di�usion equations with Robin-type boundary 
ontrol. In the talkwe review these generalizations for di�erent 
lasses of systems and dis
uss 
omputational aspe
ts.Day, Jane, San Jose State University, San Jose, CA, USA[CT, Thu. 16:55, Room 3℄ Graph Energy Change Due to Edge DeletionThe energy of a graph is the sum of the singular values of its adja
en
y matrix. We are interested in the e�e
ton energy when one edge is removed, or a set of edges. A singular value inequality for a partitioned matrixproves useful for studying su
h questions. We des
ribe an in�nite family of graphs for whi
h ea
h graph hasan edge whose removal leaves the energy un
hanged, another family for whi
h removing any edge de
reasesenergy and still another in�nite family for whi
h removing any edge in
reases the energy. We give a su�
ient
ondition on a graph G and edges e su
h that the energy stri
tly de
reases when e is removed. We have similarresults for removing a 
ut set.Deaett, Louis, University of Wis
onsin-Madison, Madison, WI, USA[MS1, Thu. 12:15, Room 1℄The graph and rank of a positive semide�nite matrixFrom a well-known 1991 result of M. Rosenfeld, if A is a positive semide�nite matrix whose 
orrespondinggraph G(A) 
ontains no triangle then the number of verti
es of G(A) is at most twi
e the rank of A. This gives
ω(G) ≤ 2⇒ mr+(G) ≥ ⌈n/2⌉.We explore the stru
ture of matri
es that a
hieve this bound, and investigate whether other features of therelationship between mr+(G) and the stru
ture of G 
an thereby be illuminated.DeAlba, Luz, Drake University, Des Moines, USA[MS1, Fri. 16:20, Room 1℄ The Q-matrix 
ompletion problemA partial matrix is a matrix that 
ontains some spe
i�ed entries, while all other entries remain unspe
i�edand 
an be freely assingned a value. An n × n partial matrix, B, spe
i�es a digraph D = (VD, AD), if

VD = {1, 2, . . . , n}, and (i, j) ∈ AD if and only if the entry bij of B is spe
i�ed. A real n × n matrix is a
Q-matrix if for every k = 1, 2, . . . , n, the sum of all k × k prin
ipal minors is positive. A partial matrix is apartial Q-matrix if the sum of all k × k prin
ipal minors is positive for every k for whi
h all k × k prin
ipalmatri
es are fully spe
i�ed. A digraph D is said to have Q-
ompletion if every partial Q-matrix spe
ifying
D 
an be 
ompleted to a Q-matrix. In this presentation we give su�
ient 
onditions for a digraph to have
Q-
ompletion, we also give ne
essary 
onditions for a digraph to have Q-
ompletion, and 
hara
terize thosedigraphs of order at most four that have Q-
ompletion.(with Leslie Hogben and Bhaba Sharma) 15



Dhillon, Inderjit, University of Texas, Austin, USA[MS2, Thu. 16:55, Room 1℄ On some modi�ed root-�nding problemsModern problems in data analysis require the solution of some interesting matrix nearness problems. Onesu
h problem arises when using an information-theoreti
 distan
e measure 
alled the von Neumann matrixdivergen
e (related to von Neumann entropy). The matrix nearness problem in turn leads to a modi�ed root-�nding problem involving the matrix exponential. In this talk, I will show how the Newton method 
an beapplied to solve this problem. The 
entral issue is the e�
ient 
al
ulation of the derivative whi
h involves thematrix exponential and a �diagonal + low-rank� eigenvalue problem.(with Matyas Sustik)Dodig, Marija, CELC, Universidade de Lisboa, Lisbon, Portugal[CT, Mon. 10:45, Room 3℄ Singular systems, state feedba
k problemIn this talk, the stri
t equivalen
e invariants by state feedba
k for singular systems are studied. As the mainresult we give the ne
essary and su�
ient 
onditions under whi
h there exists a state feedba
k su
h that theresulting system has pres
ribed pole stru
ture as well as row and 
olumn minimal indi
es. This result presentsa generalization of previous results of state feedba
k a
tion on singular systems.Dogan-Dunlap, Hamide, UTEP, El Paso, TX, USA[MS4, Mon. 11:10, Room 1℄Thinking Modes Revealed on Students' Responses from an Assignment on LinearIndependen
eThe main goal of our work was to do
ument di�eren
es on the type of modes students use after being exposedto two di�erent interventions. Both interventions used 
omputer-based a
tivities providing numeri
al (�rstintervention) and geometri
al (se
ond intervention) representations. Only the modes displayed on studentresponses from an assignment that was given during the se
ond intervention are reported here. This assign-ment 
onsisted of seven questions on linear independen
e. The aspe
ts of forty-�ve matrix algebra students'thinking modes are do
umented in light of Sierpinska's framework on thinking modes (2000)*. Our qualitativeanalysis implemented a 
onstant 
omparison method, an indu
tive approa
h to 
lassifying responses throughemerging themes. Our analysis revealed that, in 
on
rete (traditional) questions that do not require gener-alization/abstra
tion, students' responses in
luded various geometri
al aspe
ts of ve
tors and planes in R3.Some of whi
h are as follows: �ve
tors 
oming out of a plane," �Ve
tors that lie on the same plane," and �themagnitude of ve
tors are the same/di�erent." Even though, students used graphi
al modes in their responsesfor the 
on
rete questions, when answering more abstra
t questions requiring 
onje
ture and generalization,many of these students' responses fell ba
k on the algebrai
 and arithmeti
 modes. Some for instan
e statedmainly the formal de�nition of linear independen
e without showing any work/
omputation to justify theiranswers for these questions. We should also note that despite this fa
t, the se
ond most 
ommon mode usedin the abstra
t questions were geometri
al. We furthermore observed that the notable number of studentsmade arguments using multiple modes; numeri
al, algebrai
 and geometri
al. One may infer from this that, atthis point, students may begin reasoning in multiple modes. We believe that this is a desired behavior towardforming a ri
h 
on
eptual understanding of linear independen
e.*Sierpinska, A. 2000. On some aspe
ts of students' thinking in linear algebra, The Tea
hing of Linear Algebrain Question, The Netherlands 2000, pp. 209�246. 16



Dolinar, Gregor, Fa
ulty of Ele
tri
al Engineering, Ljubljana, Slovenia[CT, Thu. 17:20, Room 4℄ General preservers of quasi-
ommutativityLet Mn be the algebra of all n×n matri
es over the 
omplex �eld C. We say that A,B ∈Mn quasi-
ommuteif there exists a nonzero ξ ∈ C su
h that AB = ξBA. In the paper we 
lassify bije
tive not ne
essarily linearmaps Φ: Mn →Mn whi
h preserve quasi-
ommutativity in both dire
tions.(with Bojan Kuzma)Domínguez, María Elena, Universidad Polité
ni
a de Madrid, Madrid, Spain[CT, Mon. 17:20, Room 3℄General solution of 
ertain matrix equations arising in �lter design appli
ationsIn this work we present the expli
it expression of all re
tangular Toeplitz matri
es B,C whi
h verify theequation BBH +CCH = aI for some a > 0. This matrix equation arises in some signal pro
essing problems.For instan
e, it appears when designing the even and odd 
omponents of paraunitary �lters, whi
h are widelyused for signal 
ompression and denoising purposes. We also point out the relationship between the abovematrix equation and the polynomial Bezout equation |B(z)|2 + |C(z)|2 = a > 0 for |z| = 1. By exploiting thisfa
t, our results also yield a 
onstru
tive method for the parameterization of all solutions B(z), C(z). Themain advantage of our approa
h is that B are C are built without need of spe
tral fa
torization. Besides thesetheoreti
al advan
es, in order to illustrate the e�e
tiveness of our approa
h, some examples of paraunitary�lters design are �nally given.Dopazo, Esther, Fa
ultad de Informáti
a. Universidad Polité
ni
a de Madrid, Boadilla del Monte, Madrid,Spain[CT, Fri. 10:35, Room 4℄Further results on the representation of the Drazin inverse of a 2× 2 blo
k matrixLet A be an n×n 
omplex matrix. The Drazin inverse of A is the unique matrix AD satisfying the relations:
ADAAD = AD, ADA = AAD, Ak+1AD = Awhere k = Ind(A), the index of A, is the smallest nonnegative integer su
h that

rank(Ak) = rank(Ak+1). The 
on
ept of Drazin inverse plays an important role in various �elds like Markov
hains, singular di�erential and di�eren
e equations, iterative methods, et
. A 
hallenge of great interest inthis area is to establish an expli
it representation for the Drazin inverse of a 2×2 blo
k matrixM =

(
A B
C D

),where A and D are square matri
es, in terms of AD and DD with arbitrary blo
ks A, B, C and D. It wasposed as an open problem by Campbell and Meyer in 1979, in 
one

tion with the problem to �nd generalexpressions for the solutions of the se
ond-order system of the di�erential equations
Ex′′(t) + Fx′(t) +Gx(t) = 0,where the matrix E is singular. Starting from the general formula given by C. D. Meyer and N. J. Rose [6℄ forthe Drazin inverse of triangular blo
k matri
es (B = 0 or C = 0), an intensive resear
h has been developed onthis topi
. Re
ently, some partial results have been obtained under spe
i�
 
onditions [1-5,7℄. In this paper,we provide an expli
it formula for 2× 2 blo
k matri
es assuming the geometri
al 
ondition
R(B) ⊂ N (C) ∩ N (D)where R(· ) and N (· ) denote the range and the null spa
e of the 
orresponding matrix, respe
tively. It gener-alizes results given by R. E. Hartwig, X. Li and Y. Wei [4℄ and by D. S. Djordjevi
 and P. S. Stanmirovi
 [3℄.From our main result, some spe
ial 
ases and perturbation results are derived.This resear
h has been partly supported by proje
t MTM2007-67232, �Ministerio de Edu
a
ión y Cien
ia" ofSpain. 17



Referen
es[1℄ D. Cvetkovi
-Ili
, A note on the representation for the Drazin inverse of 2 × 2 blo
k matri
es , LinearAlgebra and its appli
ations (2008), doi:10.1016/j.laa.2008.02.019.[2℄ N. Castro-González, E. Dopazo, J. Robles, Formulas for the Drazin inverse of spe
ial blo
k matri
es ,Appl. Math. Comput., 174 (2006), 252�270.[3℄ D. S. Djordjevi¢, P. S. Stanimirovi¢, On the generalized Drazin inverse and generalized resolvent ,Cze
hoslovak Math. J., 51 (126) (2001), 617�634.[4℄ R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a 2 × 2 blo
k matrix , SIAM J.Matrix Anal. Appl., 27 (2006) 757�771.[5℄ X. Li, Y. Wei, A note on the representations for the Drazin inverse of 2×2 blo
k matri
es , Linear AlgebraAppl. 423 (2007) 332�338.[6℄ C.D. Meyer, Jr., N. J. Rose, The index and the Drazin inverse of blo
k triangular matri
es, SIAM J. Appl.Math. 33 (1977), 1�7.[7℄ Y. Wei, Expression for the Drazin of 2×2 blo
k matrix, Linear and Multilinear Algebra 45 (1998) 131�146.(with M. F. Martínez-Serrano and N. Castro-González)Esen, Özlem, Anadolu University, Eskisehir, Turkey[CT, Fri. 17:10, Room 3℄ On The Root Clustering of Matri
esRoot 
lustering problems of matri
es are 
onsidered. Here we are given 
onditions for eigenvalues of a matrixto lie in a pres
ribed subregion D of the 
omplex plane. The region D (stability region ) is de�ned by rationalfun
tions. A simple ne
essary and su�
ient 
ondition for stability of a single matrix is obtained. For a
ommutting polynomial family a ne
essary and su�
ient 
ondition in terms of a 
ommon solution to a setof Lyapunov inequalities is derived. A simple su�
ient 
ondition for the Hurwitz stability of a 
ommuttingquadrati
 polynomial matrix family is given.Estati
o, Claudio, Universitá di Cagliari, Cagliari, Italy[MS3, Fri. 10:35, Room2℄Blo
k splitting least square regularization for stru
tured matri
es arising in nonlinearmi
rowave imagingNonlinear inverse problems arising in a lot of real appli
ations generally leads to very large s
aled and stru
-tured matri
es, whi
h require a wide analysis in order to redu
e the numeri
al 
omplexity, both in time andspa
e. Sin
e these problems are ill-posed, any solving strategy based on linearization involves a some leastsquare regularization. In this talk a mi
rowave imaging problem is introdu
ed: the diele
tri
 properties of anobje
t under test (i.e., the output image to restore) are retrieved by means of its s
attered mi
rowave ele
-tromagneti
 �eld (i.e., the input data). By a theoreti
al point of view, the mathemati
al model is a nonlinearintegral equation with stru
tured shift variant integral kernel. By a numeri
al point of view, the lineariza-tion and dis
retization gives rise to an ill-
onditioned blo
k arrow matrix with stru
tured blo
ks, whi
h isiteratively solved by a three-level regularizing Inexa
t-Newton s
heme as follows: (i) the �rst (outer) level ofiterations is related to a least square Gauss-Newton linearization; the se
ond level of iterations is related toa blo
k splitting iterative s
heme; (iii) the third and nested inner level of iterations is related to a regular-ization iterative method for any system blo
k arising from any level II iteration. After that, post-pro
essingte
hniques based on linear super-resolution improves the quality of the results, and some numeri
al results are18



given and 
ompared.This is a joint work with Professor J. Nagy of the Emory University, Atlanta, and Professors F. Di Benedetto,M. Pastorino, A. Randazzo and G. Bozza, of the University of Genova, Italy.BibliographyC. Estati
o, G. Bozza, A. Massa, M. Pastorino, A. Randazzo,�A two steps inexa
t-Newton method for ele
tromagneti
 imaging of diele
tri
 stru
tures from real data�,Inverse Problems, 21, pp. S81�S94, 2005.C. Estati
o, G. Bozza, M. Pastorino, A. Randazzo,�An Inexa
t-Newton method for mi
rowave re
onstru
tion of strong s
atterers�, IEEE Antennas and WirelessPropagation Letters, 5, pp. 61-64, 2006.F. Di Benedetto, C. Estati
o, J. Nagy,�Numeri
al linear algebra for nonlinear mi
rowave imaging�, in preparation.*with J. Nagy, F. di Benedetto, M. Pastorino, A. Randazzo, and G. Boza)Eubanks, Sherod, Washington State University, Pullman, USA[MS8, Mon. 18:10, Room 1℄ Generalized Soules Matri
esI will dis
uss a generalization of Soules matri
es and its appli
ation to the nonnegative inverse eigenvalueproblem, eventually nonnegative matri
es, and exponentially nonnegative matri
es.Fassbender, Heike, TU Brauns
hweig, Brauns
hweig, Germany[Plenary, Thu. 8:10�9:05℄Stru
tured Methods for Eigenproblems with Hamiltonian Spe
tral SymmetryIntrodu
tionIt usually takes a long pro
ess of simpli�
ations, linearizations and dis
retizations before one 
omes up withthe problem of 
omputing the eigenvalues or invariant subspa
es of a matrix. These te
hniques typi
ally leadto highly stru
tured matrix representations, whi
h, for example, may 
ontain redundan
y or inherit somephysi
al properties from the original problem. As a simple example, let us 
onsider a quadrati
 eigenvalueproblem of the form
(λ2In + λC +K)x = 0, (5)where C ∈ Rn×n is skew-symmetri
 (C = −CT ), K ∈ Rn×n is symmetri
 (K = KT ), and In denotesthe n × n identity matrix. Eigenvalue problems of this type arise, e.g., from gyros
opi
 systems [8, 12℄ orMaxwell equations [9℄; they have the physi
ally relevant property that all eigenvalues appear in quadruples

{λ,−λ, λ̄,−λ̄}, i.e., the spe
trum is symmetri
 with respe
t to the real and imaginary axes.Linearization turns (5) into a matrix eigenvalue problem, e.g., the eigenvalues of (5) 
an be obtained fromthe eigenvalues of the matrix
A =

[
− 1

2C
1
4C

2 −K
In − 1

2C

]
. (6)This 2n× 2n matrix is stru
tured, its 4n2 entries depend only on the n2 entries ne
essary to de�ne C and K.The matrix A has the parti
ular property that it is a Hamiltonian matrix, i.e., A is a two-by-two blo
k matrixof the form [

B G
Q −BT

]
, G = GT , Q = QT , B,G,Q ∈ R

n×n.Considering A to be Hamiltonian does not 
apture all the stru
ture present in A but it 
aptures an essentialpart: the spe
trum of any Hamiltonian matrix is symmetri
 with respe
t to the real and and imaginary axes.19



Hamiltonian matri
es also arise in appli
ations related to linear 
ontrol theory for 
ontinuous-time sys-tems [1℄. De
iding whether a 
ertain Hamiltonian matrix has purely imaginary eigenvalues is the most 
riti
alstep in algorithms for 
omputing the stability radius of a matrix or the H∞ norm of a linear time-invariantsystem, see, e.g., [5, 6℄.When 
omputing the eigenvalues of a Hamiltonian eigenvalue problem with a standard method like the QRmethod, the 
omputed eigenvalues will not obey the eigenvalue pairing {λ,−λ, λ̄,−λ̄}, for 
omplex eigenvalueswith nonzero real part and {λ,−λ} for real and purely imaginary eigenvalues. The des
ribed eigenvalue pairingsoften re�e
t important properties of the underlying appli
ation and should thus be preserved in �nite-pre
isionarithmeti
. Numeri
al methods that take this stru
ture into a

ount are 
apable of preserving the eigenvaluepairings of the original eigenvalue problem (5), despite the presen
e of roundo� and other approximationerrors. Besides the preservation of su
h eigenvalue symmetries, there are several other bene�ts to be gainedfrom using stru
ture-preserving algorithms in pla
e of general-purpose algorithms for 
omputing eigenvalues.These bene�ts in
lude redu
ed 
omputational time and improved eigenvalue/eigenve
tor a

ura
y.
QR-like algorithms that a
hieve this goal have been developed in [4, 6, 13℄ while Krylov subspa
e methodstailored to Hamiltonian matri
es 
an be found in [2, 3, 7, 8, 14℄. In this talk, we will review these methods
on
entrating on the symple
ti
 Lan
zos method endowed with an impli
it restarting strategy. Unfortunately,the implementation of e�
ient lo
king and purging strategies for this method turns out to be even more
ompli
ated than in the non-stru
tured, impli
itly restarted Arnoldi (IRA) method. An elegant away aroundthis di�
ulty was presented for IRA by Stewart [10, 11℄, using a Krylov-S
hur de
omposition te
hnique. Inthis talk, we will dis
uss the appli
ation of this idea for the symple
ti
 Lan
zos pro
ess. This will lead to fairlyeasy implementable purging and lo
king strategies whi
h improve the 
onvergen
e properties of the stru
turedeigensolver based on the symple
ti
 Lan
zos pro
ess signi�
antly. We demonstrate the e�
ien
y of the news
heme by testing the algorithm on several linear and quadrati
 eigenproblems with Hamiltonian spe
tralsymmetry.This is joint work with Peter Benner (TU Chemnitz, Germany) and Martin Stoll (University of Oxford,England).Referen
es[1℄ P. Benner. Computational methods for linear-quadrati
 optimization. Supplemento ai Rendi
onti delCir
olo Matemati
o di Palermo, Serie II, No. 58:21�56, 1999.[2℄ P. Benner and H. Faÿbender. An impli
itly restarted symple
ti
 Lan
zos method for the Hamiltonianeigenvalue problem. Linear Algebra Appl., 263:75�111, 1997.[3℄ P. Benner, D. Kressner, and V. Mehrmann. Skew-Hamiltonian and Hamiltonian eigenvalue problems:Theory, algorithms and appli
ations. In Z. Drma£, M. Maru²i¢, and Z. Tutek, editors, Pro
eedings ofthe Conferen
e on Applied Mathemati
s and S
ienti�
 Computing, Brijuni (Croatia), June 23-27, 2003,pages 3�39. Springer-Verlag, 2005.[4℄ P. Benner, V. Mehrmann, and H. Xu. A numeri
ally stable, stru
ture preserving method for 
omputingthe eigenvalues of real Hamiltonian or symple
ti
 pen
ils. Numer. Math., 78(3):329�358, 1998.[5℄ S. Boyd, V. Balakrishnan, and P. Kabamba. A bise
tion method for 
omputing the H∞ norm of a transfermatrix and related problems. Math. Control, Signals, Sys., 2:207�219, 1989.[6℄ R. Byers. A Hamiltonian QR algorithm. SIAM J. S
i. Statist. Comput., 7(1):212�229, 1986.[7℄ W. R. Ferng, W.-W. Lin, and C.-S. Wang. The shift-inverted J-Lan
zos algorithm for the numeri
alsolutions of large sparse algebrai
 Ri

ati equations. Comput. Math. Appl., 33(10):23�40, 1997.[8℄ V. Mehrmann and D. S. Watkins. Stru
ture-preserving methods for 
omputing eigenpairs of large sparseskew-Hamiltonian/Hamiltonian pen
ils. SIAM J. S
i. Comput., 22(6):1905�1925, 2000.20



[9℄ F. S
hmidt, T. Friese, L. Zs
hiedri
h, and P. Deu�hard. Adaptive multigrid methods for the ve
to-rial Maxwell eigenvalue problem for opti
al waveguide design. In W. Jäger and H.-J. Krebs, editors,Mathemati
s. Key Te
hnology for the Future, pages 279�292, 2003.[10℄ G.W. Stewart, A Krylov-S
hur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23(2001), pp. 601�614.[11℄ , Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, USA, 2001.[12℄ F. Tisseur and K. Meerbergen. The quadrati
 eigenvalue problem. SIAM Rev., 43(2):235�286, 2001.[13℄ C. F. Van Loan. A symple
ti
 method for approximating all the eigenvalues of a Hamiltonian matrix.Linear Algebra Appl., 61:233�251, 1984.[14℄ D. S. Watkins. On Hamiltonian and symple
ti
 Lan
zos pro
esses. Linear Algebra Appl., 385:23�45, 2004.(with Peter Benner (TU Chemnitz, Germany) and Martin Stoll (University of Oxford, England))Fassbender, Heike, TU Brauns
hweig, Brauns
hweig, Germany[MS6, Tue. 11:00, Room1℄On the numeri
al solution of large-s
ale sparse dis
rete-time Ri

ati equationsInspired by a large-s
ale sparse dis
rete-time Ri

ati equation whi
h arises in a spe
tral fa
torization problemthe e�
ient numeri
al solution of su
h Ri

ati equations is studied in this work. Spe
tral fa
torization is a
ru
ial step in the solution of linear quadrati
 estimation and 
ontrol problems. A variety of methods has beendeveloped over the years for the 
omputation of 
anoni
al spe
tral fa
tors for pro
esses with rational spe
traldensities, see, e.g., the survey [6℄. One approa
h involves the spe
tral fa
torization via a dis
rete-time Ri

atiequation. Whenever possible, we 
onsider the generalized dis
rete�time algebrai
 Ri

ati equation
0 = R(X) = CTQC +ATXA− ETXE (7)

−(ATXB + CTS)(R+BTXB)−1(BTXA+ STC),where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, Q ∈ Rp×p, R ∈ Rm×m, and S ∈ Rp×m. Furthermore, Q and R areassumed to be symmetri
 and A and E are large and spare. For the parti
ular appli
ation above, we have
A =




0 1. . . . . .
0 1

0


 .The fun
tion R(X) is a rational matrix fun
tion, R(X) = 0 de�nes a system of nonlinear equations. Newton'smethod for the numeri
al solution of DAREs 
an be formulated as followsfor k = 0, 1, 2, . . .1. Kk ← K(Xk) = (R+BTXkB)−1(BTXkA+ STC).2. Ak ← A−BKk.3. Rk ←R(Xk).4. Solve for Nk in the Stein equation

AT
kNkAk − ETNkE = −Rk. (8)5. Xk+1 ← Xk +Nk.end forThe 
omputational 
ost for this algorithm mainly depends upon the 
ost for the numeri
al solution of theStein equation (8). This 
an be done using the Bartels�Stewart algorithm [1℄ or an extension to the 
ase E 6= I21



[2, 3, 4℄. The Bartels-Stewart algorithm is the standard dire
t method for the solution of Stein equations ofsmall to moderate size. This method requires the 
omputation of a S
hur de
omposition, and thus is notappropriate for large s
ale problems. The 
ost for the solution of the Stein equation is ≈ 73n3 �ops. Iteratives
hemes have been developed in
luding the Smith method [7℄, the sign-fun
tion method [5℄, and the alternatingdire
tion impli
it (ADI) iteration method [8℄. Unfortunately, all of these methods 
ompute the solution indense form and hen
e require O(n2) storage. In 
ase the solution to the Stein equation has low numeri
al rank(i.e., the eigenvalues de
ay rapidly) one 
an take advantage of this low rank stru
ture to obtain approximatesolutions in low rank fa
tored form. If the e�e
tive rank is r ≪ n, then the storage is redu
ed from O(n2) to
O(nr). This approa
h will be dis
ussed here in detail.Referen
es[1℄ R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX +XB = C: Algorithm 432,Comm. ACM, 15 (1972), pp. 820�826.[2℄ J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler, Solution of the Sylvester matrix equation

AXB + CXD = E, ACM Trans. Math. Software, 18 (1992), pp. 223�231.[3℄ J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler, Algorithm 705: A Fortran-77 software pa
kage for solving the Sylvester matrix equation AXBT + CXDT = E, ACM Trans. Math.Software, 18 (1992), pp. 232�238.[4℄ T. Penzl, Numeri
al solution of generalized Lyapunov equations, Adv. Comp. Math., 8 (1997), pp. 33�48.[5℄ J.D. Roberts, Linear model redu
tion and solution of the algebrai
 Ri

ati equation by use of the signfun
tion, Internat. J. Control, 32 (1980), pp. 677�687. (Reprint of Te
hni
al Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).[6℄ A.H. Sayed and T. Kailath, A survey of spe
tral fa
torization methods, Num. Lin. Alg. Appl., 8(2001), pp. 467�496.[7℄ R.A. Smith, Matrix equation XA+BX = C, SIAM J. Appl. Math., 16 (1968), pp. 198�201.[8℄ E.L. Wa
hspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Letters, 107 (1988),pp. 87�90.(with Peter Benner)Feng, Lihong, Fa
ulty of Mathemati
s, TU Chemnitz, Chemnitz, Germany[MS5, Thu. 11:50, Room 2℄Parametri
 Model Redu
tion for Systems with Coupled ParametersWe 
onsider model order redu
tion of parametri
 systems with parameters whi
h are nonlinear fun
tions of thefrequen
y parameter s. Su
h systems result from, for example, the dis
retization of ele
tromagneti
 systemswith surfa
e losses [1℄. Sin
e the parameters are fun
tions of the frequen
y s, they are highly 
oupled withea
h other. We see them as individual parameters when we implement model order redu
tion. By analyzingexisting methods of 
omputing the proje
tion matrix for model order redu
tion, we show the appli
abilityof ea
h method and propose an optimized method for the parametri
 system 
onsidered in this paper. Thetransfer fun
tion of the parametri
 systems 
onsidered here take the form
H(s) = sBT(s2In − 1/

√
sD +A)−1B, (9)where A,D and B are n×n and n×m matri
es, respe
tively, and In is the identity of suitable size. To applyparametri
 model order redu
tion to (9), we �rst expand H(s) into a power series. Using a series expansion22



about an expansion point s0, and de�ning σ1 := 1
s2

√
s
− 1

s2
0

√
s0
, σ2 := 1

s2 − 1
s2
0

, we may use the three di�erentmethods below to 
ompute a proje
tion matrix V and get the redu
ed-order transfer fun
tion
Ĥ(s) = sB̂T(s2Ir − 1/

√
sD̂ + Â)−1B̂,where Â = V TAV , B̂ = V TB, et
., and V is an n× r proje
tion matrix with V TV = Ir. To simplify notation,in the following we use G := I − 1

s2
0

√
s0
D + 1

s2
0

A, BM := G−1B, M1 := G−1D, and M2 := −G−1A.Dire
tly 
omputing VA simple and dire
t way for obtaining V is to 
ompute the 
oe�
ient matri
es in the series expansion
H(s) = 1

sB
T[BM + (M1BMσ1 +M2BMσ2) + (M2

1BMσ2
1

+(M1M2 +M2M1)BMσ1σ2 +M2
2BMσ2

2) + (M3
1BMσ3

1 + . . .) + . . .],
(10)by dire
t matrix multipli
ation and orthogonalize these 
oe�
ients to get the matrix V [2℄. After the 
oe�-
ients BM , M1BM ,M2BM , M2

1BM , (M1M2 +M2M1)BM , M2
2BM , M3

1BM , . . . are 
omputed, the proje
tionmatrix V 
an be obtained byrange{V } = orthogonalize{BM ,M1BM ,M2BM ,M2
1BM , (M1M2 +M2M1)BM ,M2

2BM ,M3
1BM , . . .} (11)Unfortunately, the 
oe�
ients qui
kly be
ome linearly dependent due to numeri
al instability. In the end, thematrix V is often so ina

urate that it does not possess the expe
ted theoreti
al properties.Re
ursively 
omputing VThe series expansion (10) 
an also be written into the following formulation:

H(s) =
1

s
[BM + (σ1M1 + σ2M2)BM + . . .+ (σ1M1 + σ2M2)

iBM + . . .] (12)Using (12), we de�ne
R0 = BM ,
R1 = [M1,M2]R0,...
Rj = [M1,M2]Rj−1,.... (13)We see that R0, R1, . . . , Rj , . . . in
lude all the 
oe�
ient matri
es in the series expansion (12). Therefore, we
an use R0, R1, . . . , Rj , . . . to generate the proje
tion matrix V :range{V } = 
olspan{R0, R1, . . . , Rm}. (14)Here, V 
an be 
omputed employing the re
ursive relations between Rj , j = 0, 1, . . . ,m 
ombined with themodi�ed Gram-S
hmidt pro
ess [3℄.Improved algorithm for re
ursively 
omputing VNote that the 
oe�
ientsM1M2BM andM2M1BM are two individual terms in (13), whi
h are 
omputed andorthogonalized sequentially within the modi�ed Gram-S
hmidt pro
ess. Observing that they are a
tually both
oe�
ients of σ1σ2, they 
an be 
ombined together as one term during the 
omputation as in (11). Basedon this, we develop an algorithm whi
h 
an 
ompute V in (11) by a modi�ed Gram-S
hmidt pro
ess. Bythis algorithm, the matrix V is numeri
ally stable whi
h guarantees the a

ura
y of the redu
ed-order model.Furthermore, the size of the redu
ed-order model is smaller than that of the redu
ed-order model derived by(14). Therefore, this improved algorithm is optimal for the parametri
 system 
onsidered in this paper.23



Referen
es[1℄ T. Wittig, R. S
huhmann, and T. Weiland. Model order redu
tion for large systems in 
omputationalele
tromagneti
s. Linear Algebra and its Appli
ations, 415(2-3):499-530, 2006.[2℄ L. Daniel, O.C. Siong, L.S. Chay, K.H. Lee, and J. White. A multiparameter moment-mat
hing model-redu
tion approa
h for generating geometri
ally parameterized inter
onne
t performan
e models. IEEETrans. Comput.-Aided Des. Integr. Cir
uits Syst., 22 (5):678�693, 2004.[3℄ L. Feng and P. Benner. A Robust Algorithm for Parametri
 Model Order Redu
tion. Pro
. Appl. Math.Me
h., 7, 2008 (to appear).This resear
h is supported by the Alexander von Humboldt-Foundation and by the resear
h network SyreNe� System Redu
tion for Nanos
ale IC Design within the program Mathemati
s for Innovations in Industryand Servi
es (Mathematik für Innovationen in Industrie und Dienstleistungen) funded by the German FederalMinistry of Edu
ation and S
ien
e (BMBF).(with Peter Benner)Fernandes, Rosário, Centro de Estruturas Lineares e Combinatórias (CELC), Lisboa, Portugal[CT, Mon. 11:10, Room 4℄Rank partitions and 
overing numbers under small perturbations of an elementLet (v1, . . . , vm) be a family of ve
tors of Cn (where C is the �eld of 
omplex numbers). Let k be a positiveinteger. A subfamily (vi1 , . . . , vij
) of (v1, . . . , vm) is k-independent if it is the union of k subfamilies ea
h ofwhi
h is linearly independent. The k-dimension of (v1, . . . , vm) (denoted by dk(v1, . . . , vm)) is the maximum
ardinality of the k-independent subfamilies of (v1, . . . , vm). It was proved in �On the µ-
olorings of a matroid"(J.A. Dias da Silva, Lin. Multil. Algebra 27 (1990), 25-32) that

(d1(v1, . . . , vm), d2(v1, . . . , vm)− d1(v1, . . . , vm), . . . , dm(v1, . . . , vm)− dm−1(v1, . . . , vm))is a partition of the number of the nonzero ve
tors in the family (v1, . . . , vm). This partition is 
alled therank partition. Let vi ∈ (v1, . . . , vm) be a nonzero ve
tor. The smallest integer s su
h that ds(v1, . . . , vm) >
ds(v1, . . . , vi−1, vi+1, . . . , vm) is 
alled the 
overing number of vi in (v1, . . . , vm). In this talk we des
ribe howthe rank partition and the 
overing number 
an 
hange with arbitrarily small perturbations of a �xed element.Ferrer, Josep, Universitat Polite
ni
a de Catalunya, Bar
elona, Spain[CT, Tue. 12:15, Room 4℄Geometri
 stru
ture of the equivalen
e 
lasses of a 
ontrollable pairIt is well known, in quite general 
onditions, the geometri
 stru
ture of the orbits generated by the a
tionof a group in a di�erentiable manifold. It seems natural to ask for the geometri
 relationships when di�erentsubgroups are 
onsidered, that is to say, the geometri
 stru
ture of the di�erent suborbits forming a latti
e,and spe
ially their interse
tions (whi
h in general must not be an orbit, even not a di�erentiable manifold).Here, we present a full uni�ed panorama in the 
ase of pairs of matri
es representing linear systems, wheredi�erent equivalent relations 
an be 
onsidered: 
hanges of basis in the state spa
e and in the input spa
e,and feedba
ks. The starting tools in this analysis are the Arnold's te
hniques of versal deformations. Morespe
i�
ally, we use two versal deformations of a pair of matri
es with regard to the blo
k similarity, and whenonly 
hanges in the state spa
e are allowed. Some interesting 
omments and remarks are derived 
on
erningthe role of di�erent kind of feedba
ks, the boundary of the suborbits, the e�e
ts of perturbing a pair...(with A. Compta and M. Peña) 24



Fonse
a, Carlos, Department of Mathemati
s, University of Coimbra, Coimbra, Portugal[CT, Thu. 12:15, Room 3℄An inequality for the multipli
ity of an eigenvalueLet A(G) be a Hermitian matrix whose graph G is given. From the interla
ing theorem, it is known that
mA(G\i)(θ) ≥ mA(G)(θ) − 1, where mA(G)(θ) is the multipli
ity of the eigenvalue θ of A(G). Motivated bythe Christo�el-Darboux Identity, in this talk we provide a similar inequality when a parti
ular path of G isdeleted.Fo²ner, Ajda, Institute of Mathemati
s, Physi
s and Me
hani
s, Ljubljana, Slovenia[CT, Mon. 11:35, Room 3℄Commutativity preserving maps on real matri
esLet Mn(R) be the algebra of all n × n real matri
es. A map φ : Mn(R) → Mn(R) preserves 
ommutativityif φ(A)φ(B) = φ(B)φ(A) whenever AB = BA, A,B ∈ Mn(R). If φ is bije
tive and both φ and φ−1 preserve
ommutativity, then we say that φ preserves 
ommutativity in both dire
tions. We will talk about non-linearmaps on Mn(R) that preserve 
ommutativity in both dire
tions or in one dire
tion only.Frank, Martin, University of Kaiserslautern, Kaiserslautern, Germany[CT, Tue. 17:45, Room 4℄An iterative method for transport equations in radiotherapyTreatment with high energy ionizing radiation is one of the main methods in modern 
an
er therapy thatis in 
lini
al use. During the last de
ades two main approa
hes to dose 
al
ulation were used, Monte Carlosimulations and pen
il-beam models. A third way to dose 
al
ulation has not attra
ted mu
h attention inthe medi
al physi
s 
ommunity. This approa
h is based on deterministi
 transport equations of radiativetransfer. In this work, we study a full dis
retization of the transport equation whi
h yields a large linearsystem of equations. The 
omputational 
hallenge is that s
attering is strongly forward-peaked, whi
h meansthat traditional solution methods like sour
e iteration fail in this 
ase. Therefore we propose a new method,whi
h 
ombines an in
omplete fa
torization of the s
attering matrix and several iterative steps to obtain afast and a

urate solution. Numeri
al examples are given.(with Bruno Dubro
a)Freund, Roland, University of California, Davis, CA, USA[MS5, Thu. 12:15, Room 2℄The E�e
ts of De�ation in Proje
tion-Based Order Redu
tionIn re
ent years, there has been a lot of interest in order redu
tion of large-s
ale linear dynami
al systems.Many of the widely-used methods today employ some form of proje
tion onto suitably 
hosen blo
k Krylovsubspa
es. It is well understood that numeri
ally robust te
hniques for 
onstru
ting bases for these blo
kKrylov subspa
es need to be able to handle de�ation of linearly dependent or nearly linearly dependent Krylovve
tors; the 
ase of linearly dependent ve
tors is 
alled exa
t de�ation, the 
ase of nearly linearly dependentve
tors is 
alled inexa
t de�ation. It is also well known that, at least in exa
t arithmeti
, the o

urren
e ofexa
t de�ation is a desirable event, in the sense that it in
reases the a

ura
y of the redu
ed-order model.On the other hand, in order to have numeri
al stable pro
edures, in �nite-pre
ision arithmeti
, one needs toperform inexa
t de�ation that in turn de
reases the a

ura
y of the redu
ed-order model. In this talk, wedis
uss the e�e
ts of inexa
t de�ation in proje
tion-based order redu
tion. We review some of the underlyingtheoreti
al results about exa
t de�ation, dis
uss some pra
ti
al remedies to minimize the loss of a

ura
y in the25




ase of inexa
t de�ation, and present results of numeri
al experiments. We will also 
onsider the spe
ial 
aseof stru
ture-preserving order redu
tion te
hniques, su
h as SPRIM, that employ suitably 
hosen partitioningsof the underlying blo
k Krylov subspa
es in order to preserve key stru
tures of the original large-s
ale lineardynami
al system.Furtado, Susana, Centro de Estruturas Lineares e Combinatórias da U. L, Porto, Portugal[CT, Thu. 11:25, Room 3℄Order Invariant Spe
tral Properties for Several Matri
esThe 
olle
tions of m n-by-n matri
es with entries in a �eld su
h that the produ
ts in any of the m! ordersshare a 
ommon similarity 
lass (resp. spe
trum, tra
e) are studied. The spe
tral and tra
e order invariantproperties are 
hara
terized and the similarity invariant one is related to them in several 
ases. A 
ompleteexpli
it des
ription is given in 
ase m = 3 and n = 2.(with Charles Johnson)Furui
hi, Shigeru, Nihon University, Tokyo, Japan[CT, Mon. 16:55, Room 4℄ On tra
e inequalities for produ
ts of matri
esSkew informations are expressed by the tra
e of produ
ts of matri
es and power of matri
es. In my talk, westudy some matrix tra
e inequalities of produ
ts of matri
es and the power of matri
es.(with Ken Kuriyama and Kenjiro Yanagi)Gassó, Maria T., Inst. Mat. Mult. Universidad Polité
ni
a Valen
ia, Valen
ia, Spain[CT, Tue. 12:15, Room 3℄The 
lass of Inverse-Positive matri
es with 
he
kerboard patternIn e
onomi
s as well as other s
ien
es, the inverse-positivity of real square matri
es has been an importanttopi
. A nonsingular real matrix A is said to be inverse-positive if all the elements of its inverse are nonnegative.An inverse-positive matrix being also a Z-matrix is a nonsingular M -matrix, so the 
lass of inverse-positivematri
es 
ontains the nonsingular M -matri
es, whi
h have been widely studied and whose appli
ations, forexample, in iterative methods, dynami
 systems, e
onomi
s, mathemati
al programming, et
, are well known.Of 
ourse, every inverse-positive matrix is not an M -matrix. For instan
e,
A =

(
−1 2

3 −1

)is an inverse-positive matrix that is not an M -matrix. The 
on
ept of inverse-positive is preserved by multi-pli
ation, left or right positive diagonal multipli
ation, positive diagonal similarity and permutation similarity.The problem of 
hara
terizing inverse-positive matri
es has been extensively dealt with in the literature (seefor instan
e [1℄). The interest of this problem arises from the fa
t that a linear mapping F (x) = Ax from Rninto itself is inverse issotone if and only if A is inverse-positive. In parti
ular, this allows us to ensure theexisten
e of a positive solution for linear systems Ax = b for any b ∈ Rn
+. In this paper we present severalmatri
es that very often o

ur in relation to systems of linear or nonlinear equations in a wide variety of areasin
luding �nite di�eren
e methods for 
ontour problems, for partial di�erential equations, Leontief model of
ir
ulating 
apital without joint produ
tion, and Markov pro
esses in probability and statisti
s. For example,matri
es that for size 5× 5 have the form

A =




1 −a 1 −a 1
1 1 −a 1 −a
−a 1 1 −a 1

1 −a 1 1 −a
−a 1 −a 1 1



,26



where a is a real parameter with e
onomi
 interpretation. Are these matri
es inverse-positive?. We study theanswer of this question and we analyze when the 
on
ept of inverse-positive is preserved by the Hadamardprodu
t A ◦ A−1. In this work we present some 
onditions in order to obtain new 
hara
terizations forinverse-positive matri
es. Johnson in [3℄ studied the possible sign patterns of a matrix whi
h are 
ompatiblewith inverse-positiveness. Following his results we analyze the inverse-positive 
on
ept for a parti
ular typeof pattern: the 
he
kerboard pattern. An n × n real matrix A = (ai,j) is said to have a 
he
kerboardpattern if sign(ai,j) = (−1)i+j , i, j = 1, 2, . . . , n. We study in this paper the inverse-positivity of bidiagonal,tridiagonal and lower (upper) triangular matri
es with 
he
kerboard pattern. We obtain 
hara
terizationsof the inverse-positivity for ea
h 
lass of matri
es. Several authors have investigated about the Hadamardprodu
t of matri
es. Johnson [2℄ showed that if the sign pattern is properly adjusted the Hadamard produ
tof M -matri
es is again an M -matrix and for any pairM ,N of M -matri
es the Hadamard produ
t M ◦N−1 isagain an M -matrix. This result does not hold in general for inverse-positive matri
es. We analyze when theHadamard produ
t M ◦ N−1, for M ,N 
he
kerboard pattern inverse-positive matri
es, is an inverse-positivematrix.Referen
es[1℄ A. Berman, R.J. Plemmons, Nonnegative matri
es in the Mathemati
al S
ien
es, SIAM 1994.[2℄ C.R. Johnson, A Hadamard Produ
t Involving M -matri
es, Linear Algebra and its Appli
ations, 4 (1977)261-264.[3℄ C.R. Johnson, Sign patterns of inverse nonnegative matri
es, Linear Algebra and its Appli
ations, 55(1983) 69-80.(with Manuel F. Abad, and Juan R. Torregrosa)Gaubert, Stephane, INRIA and CMAP, E
ole Polyte
hnique, Palaiseau, Fran
e[MS7, Mon. 10:45, Room 2℄Using max-plus eigenvalues to bound the roots of a polynomialA 
lassi
al problem 
onsists in bounding the modulus of the zeros of a polynomial in terms of the modulus of its
oe�
ients, or, more generally, in bounding the modulus of the eigenvalues of a matrix in terms of the modulusof its entries. We approa
h this problem using ideas of max-plus or tropi
al algebra. If p =
∑

0≤k≤n akx
kis a polynomial with 
omplex 
oe�
ients, we de�ne the tropi
al roots of p to be the points x ≥ 0 at whi
hthe maximum max0≤k≤n |ak|xk is attained at least twi
e. This de�nition is natural if one 
onsiders themultipli
ative version of the max-plus semiring. The tropi
al roots 
an be 
omputed by a variant of theNewton polygon 
onstru
tion, in whi
h the usual valuation of a Puiseux series is repla
ed by the valuationwhi
h takes the opposite of the logarithm of the modulus of a 
omplex number. Tropi
al roots appeared beforethe tropi
al era in works of Ostrowski and Pólya on Grae�e's method, and they were already impli
it in awork of Hadamard. We establish log-majorisation inequalities relating the moduli of the roots of a polynomial

p and 
ertain tropi
al roots, up to multipli
ative 
onstants depending only on the degree. Our approa
hrelies on matrix arguments, exploiting properties of the tropi
al analogues of the 
ompound matrix and ofthe eigenvalues. We show in parti
ular that the maximal 
ir
uit mean of the k-th tropi
al 
ompound of the
ompanion matrix of p is bounded above by the produ
t of the k largest tropi
al roots of p. We also show thatthe sequen
e of the moduli of the eigenvalues of a 
omplex matrix is weakly log-majorised by the sequen
e ofits tropi
al eigenvalues up to a multipli
ative 
onstant depending only on the dimension. We re
over alongthese lines some previous inequalities due to Hadamard, Fujiwara, Spe
ht and Ostrowski, and we also obtainnew inequalities.(with Marianne Akian (INRIA) and Adrien Brandejsky (ENS Ca
han))27



Gavale
, Martin, University of Hrade
 Králové, Hrade
 Králové, Cze
h Republi
[MS7, Wed. 11:25, Room 3℄ Permuted max-min eigenve
tor problemEigenve
tors in extremal algebras are motivated by steady states of dis
rete events systems whose behaviouris des
ribed by a square matrix 
orresponding to transition from one state of the system to the next state.In the situation when a given state ve
tor is not an eigenve
tor of the transition matrix, then the system isnot stable and we may ask whether it is possible to renumber the inputs so that the system with permutedstates be
omes stable. The following Permuted Eigenve
tor problem (PEV) is dis
ussed in this 
ontribution:Given a square matrix A and a ve
tor x of the same dimension in max-min algebra, de
ide whether there isa permutation π on indi
es su
h that the permuted ve
tor xπ is an eigenve
tor of matrix A, i.e A⊗ xπ = xπ .Analogous problem has re
ently been studied by P. Butkovi£ in [1℄ for matri
es and ve
tors in max-plusalgebra. It has been shown that the max-plus version of PEV is NP-
omplete and so is IPEV, the restri
tionof PEV to integer values. Relations of PEV to further notions in max-min algebra, like strongly regularmatrix, simple image ve
tor (ve
tor with unique pre-image), generally trapezoidal matrix (see [2, 4℄), will bedes
ribed in the presentation. It will be shown that PSIV, the restri
tion of PEV to simple image ve
tors (and
onsequently, to strongly regular matri
es) 
an be solved in polynomial time using the generally trapezoidalalgorithm GenTrap des
ribed in [3℄.Referen
es[1℄ P. Butkovi£, Permuted max-algebrai
 (tropi
al) eigenve
tor problem is NP-
omplete, Linear Algebra andits Appli
ations 428 (2008) 1874-1882.[2℄ M. Gavale
, J. Plavka, Strong regularity of matri
es in general max-min algebra, Linear Algebra and itsAppli
ations 371 (2003), 241-254.[3℄ M. Gavale
, General trapezoidal algorithm for strongly regular max-min matri
es, Linear Algebra and itsAppli
ations 369 (2003), 319-338.[4℄ M. Gavale
, J. Plavka, Simple image set of linear mappings in a max-min algebra, Dis
rete AppliedMathemati
s 155 (2007), 611-622.(with J. Plavka)Gemignani, Lu
a, Department of Mathemati
s University of Pisa, Pisa, Italy[Plenary, Thu. 15:30�16:25℄Eigenvalue Problems for Rank-stru
tured Matri
esA re
ent signi�
ant breakthrough in the �eld of numeri
al linear algebra is the design of fast and numeri
allystable eigenvalue algorithms for 
ertain 
lasses of rank-stru
tured matri
es, in
luding, for instan
e, diagonalplus low-rank and 
ompanion matri
es. Our developments in numeri
al methods for solving these large stru
-tured eigenvalue problems are reviewed and state-of-the-art algorithms for both dire
t and inverse problemsare dis
ussed. As well as important 
on
eptual and theoreti
al aspe
ts, emphasis is also pla
ed on morepra
ti
al 
omputational issues and appli
ations in matrix and polynomial 
omputations.
28



Glebsky, Lev, Universidad Autónoma de San Luis Potosi, San Luis Potosi, Méxi
o[CT, Tue. 11:50, Room 3℄ On low rank perturbations of matri
esThe talk is devoted to di�erent aspe
ts of the question: �What 
an be done with a matrix by a low rankperturbation?" It is proved that one 
an 
hange a geometri
ally simple spe
trum drasti
ally by a rank 1perturbation, but the situation is quite di�erent if one restri
ts oneself to normal matri
es. Also the Jordannormal form of a perturbed matrix is dis
ussed. It is proved that with respe
t to the distan
e d(A,B) =rank(A−B)
n (here n is the size of the matri
es) all almost unitary operators are near unitary.(with Luis Manuel Rivera)Goldberger, Assaf, Tel Aviv University, Tel Aviv, Israel[CT, Fri. 16:20, Room 3℄An upper bound on the 
hara
teristi
 polynomial of a nonnegative matrix leading to a proofof the Boyle�Handleman 
onje
tureWe prove a 
onje
ture by Boyle and Handelam, saying that if A ∈ Rn,n is a nonnegative matrix of rank rand spe
tral radius 1, and if χA(t) is its 
hara
teristi
 polynomial, then χA(x) ≤ xn− xn−r for all x ≥ 1. Ourproof is based on the Newton Identities.(with Mi
hael Neumann)Gouveia, María, Department of Mathemati
s, FCTUC, Coimbra, Portugal[CT, Mon. 16:55, Room 3℄ On a singular Toeplitz pen
ilThe Toeplitz Pen
il Conje
ture stated by W. S
hmale and P.K. Sharma is equivalent to a 
onje
ture for

n× n Hankel matri
es over C[x]. In this paper it is shown how results on the theory of Hankel matri
es overdomains 
an be used to solve this 
onje
ture.Grout, Jason, Iowa State University, Ames, USA[MS1, Thu. 11:25, Room 1℄Chara
terizing graphs with minimum rank at most a given number over a �nite �eld usingpolarities of proje
tive geometriesThe stru
tures of all graphs having minimum rank at most k over a �nite �eld with q elements will be
hara
terized for any possible k and q. A strong 
onne
tion between this 
hara
terization and polarities ofproje
tive geometries will be explained. Using this 
onne
tion, a few results in the minimum rank problemwill be derived by applying some known results from proje
tive geometry.Grudsky, Sergey, CINVESTAV del I.P.N., Méxi
o, Méxi
o[CT, Mon. 18:35, Room 3℄Uniform boundedness of Toeplitz Matri
es with variable 
oe�
ientsUniform boundedness of sequen
es of variable-
oe�
ient Toeplitz matri
es is a surprisingly deli
ate problem.We show that if the generating fun
tion of the sequen
e belongs to a smoothness s
ale of the Holder type andif α is the smoothness parameter, then the sequen
e may be unbounded for α < .05 while it is always boundedfor α < .05 29



Guger
in, Serkan, Virginia Te
h, Bla
ksburg, VA, USA[MS5, Thu. 10:35, Room 2℄A Krylov-Based Des
ent Approa
h for the Optimal H2 Model Redu
tion of Large-S
aleDynami
al SystemsIn this work, we present an approa
h to model redu
tion for linear dynami
al systems that is numeri
allystable, 
omputationally tra
table even for very large order systems, produ
es a sequen
e of monotone de-
reasing H2 error norms, and is globally 
onvergent to a redu
ed order model that is guaranteed to satisfy�rst-order optimality 
onditions with respe
t to H2 error. The interpolation points are the variables of theunderlying optimization problem. Convergen
e properties and e�e
tiveness of the algorithm are presentedthrough numeri
al examples.Guo, Chun-Hua, University of Regina, Regina, Canada[MS6, Tue. 11:25, Room 1℄On Newton's method and Halley's method for p-th roots of matri
esIf A is any matrix with no eigenvalues on the 
losed negative real axis, the prin
ipal pth root of A, A1/p(p ≥ 2 is any integer), 
an be 
omputed by Newton's method or Halley's method (with X0 = I) after aproper prepro
essing if ne
essary. The matrix A may also be allowed to have semisimple zero eigenvalues.We show that Newton's method 
onverges to A1/p if all eigenvalues of A are in {z : |z − 1| ≤ 1} and allzero eigenvalues of A (if any) are semisimple. Suppose that all eigenvalues of A are in {z : |z − 1| < 1} andwrite A = I − B (so ρ(B) < 1). Let (I − B)1/p =
∑∞

i=0 ciB
i be the binomial expansion. Then the sequen
e

Xk generated by Newton's method or by Halley's method has the Taylor expansion Xk =
∑∞

i=0 ck,iB
i. ForNewton's method we show that ck,i = ci for i = 0, 1, . . . , 2k−1, and for Halley's method we show that ck,i = cifor i = 0, 1, . . . , 3k − 1.Guzmán, José Ramón, Instituto de Investiga
iones E
onómi
as. UNAM., Méxi
o, Méxi
o[CT, Fri. 15:30, Room 4℄Redu
tion of an Ito's di�usion input output model for the determination of square meanstabilityWhile Ito�s difussion is known for s
ientists 
oming of di�erent areas su
h as physi
s, engineering, biology;for so
ial s
ientists it is pra
ti
ally unknown. In this sto
hasti
 pro
ess the relevant points to 
onsider arethe 1-mean stability (Lyapounov stability) and square mean stability, more strong that 1-mean stability. Inparti
ular we propose a multise
toral difussion linear input output model. When 
onsidering this dynami
ale
onomi
 system there is asso
iated a di�eren
ial equation system with symmetri
 state variables for theinvestigation of the square mean stability. Of this last system a d2×d2 matrix is obtained. Here is proposed ageneral algorithm that transforms the d2×d2 matrix to one of order ((d(d+1))/2)∗ ((d(d+1))/2), 
onservingthe same eigenvalues information. This redu
tion algorithm allows us super
omputations of eigenvalues forlarge s
ale dynami
al input output systems.Harel, Guershon, Dept of Math, University of California, San Diego, San Diego, USA[MS4, Mon. 10:45, Room 1℄Intelle
tual Need and Its Role in Mathemati
s Instru
tion: Fo
us on Linear AlgebraThe notion of intelle
tual need is inextri
ably linked to the notion of epistemologi
al justi�
ation. Generallyspeaking, epistemologi
al justi�
ation refers to the learner's dis
ernment of how and why a parti
ular pie
eof knowledge 
ame to be. It involves the learner's per
eived 
ause for the birth of knowledge. The per
eived
ause is a problemati
 situation whose resolution for the learner has ne
essitated for her or him the 
reation of30



a new knowledge. Su
h a situation is 
alled intelle
tual need. Most students, even those who desire to su

eedin s
hool, are intelle
tually aimless in mathemati
s 
lasses be
ause their tea
hers fail to help them realize anintelle
tual need for what they intent to tea
h them. In this talk I will dis
uss the role these two 
onstru
tsshould play in mathemati
s instru
tion, fo
using mainly on the learning and tea
hing of linear algebra.Hershkowitz, Danny, Te
hnion, Haifa, Israel[MS1, Wed. 11:00, Room 1℄On nonnegative sign equivalent and sign similar fa
torizations of matri
esIt is shown that every real n × n matrix is a produ
t of at most two nonnegative sign equivalent matri
es,and every real n× n matrix, n=2, is a produ
t of at most three nonnegative sign similar matri
es. Finally, itis proved that every real n× n matrix is a produ
t of totally positive sign equivalent matri
es. However, thequestion of the minimal number of su
h fa
tors is left open.(with Allan Pinkus)Hn¥tynková, Iveta, Dep. of Mathemati
s, Arizona State University, Tempe, Arizona[MS3, Thu. 18:10, Room 2℄ On solvability of total least squares problemLet A be a real m by n matrix, and b a real m-ve
tor. Consider estimating x from an orthogonally invariantlinear approximation problem
Ax ≈ b, (15)where the data b, A 
ontain redundant and/or irrelevant information. In total least squares (TLS) this problemis solved by 
onstru
ting a minimal 
orre
tion to the ve
tor b and the matrix A su
h that the 
orre
ted systemis 
ompatible. Contrary to the standard least squares approximation problem, a solution of a TLS problemdoes not always exist. In addition, the data b, A 
an su�er from multipli
ities and in this 
ase a TLSsolution may not be unique. Classi
al analysis of TLS problems is based on the so 
alled Golub - Van Loan
ondition σmin(A) > σmin([b, A]) , see [2, 4℄. This 
ondition is, however, intri
ate through the fa
t that itis only su�
ient but not ne
essary for the existen
e of a TLS solution. A new 
ontribution to the theoryand 
omputation of linear approximation problems was published in a sequen
e of papers [5, 6, 7℄, see also[3℄. Here it is proved that the partial upper bidiagonalization [1℄ of the extended matrix [b, A] determinesa 
ore approximation problem A11x1 ≈ b1 , with the ne
essary and su�
ient information for solving theoriginal problem given by b1 and A11. The transformed data b1 and A11 
an be 
omputed either dire
tly,using Householder orthogonal transformations, or iteratively, using the Golub-Kahan bidiagonalization. Itis shown how the 
ore problem 
an be used in a simple and e�
ient way for solving the total least squaresformulation of the original approximation problem.In this 
ontribution we dis
uss the ne
essary and su�
ient 
ondition for the existen
e of a TLS solutionbased on the 
ore redu
tion, and mention work on extensions of the results to linear approximation problemswith multiple right hand sides [8℄.Referen
es[1℄ G. H. Golub, W. Kahan, Cal
ulating the singular values and pseudo-inverse of a matrix, SIAM J. Numer.Anal. Ser. B 2, pp. 205�224, 1965.[2℄ G. H. Golub, C. F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17,pp. 883�893, 1980.[3℄ I. Hn¥tynková, Z. Strako², Lan
zos tridiagonalization and 
ore problems, Lin. Alg. Appl. 421, pp. 243�251,2007. 31



[4℄ S. Van Hu�el, J. Vandewalle, The total least squares problem: 
omputational aspe
ts and analysis, SIAM,Philadelphia, 1991.[5℄ C. C. Paige, Z. Strako², S
aled total least squares fundamentals, Numer. Math. 91, pp. 117�146, 2002.[6℄ C. C. Paige, Z. Strako², Unifying least squares, total least squares and data least squares, in �Total LeastSquares and Errors-in-Variables Modeling�, S. van Hu�el and P. Lemmerling, editors, Kluwer A
ademi
Publishers, Dordre
ht, pp. 25�34, 2002.[7℄ C. Paige, Z. Strako², Core problems in linear algebrai
 systems, SIAM J. Matrix Anal. Appl. 27, pp.861�875, 2006.[8℄ I. Hn¥tynková, M. Ple²inger, D. M. Sima, Z. Strako², S. Van Hu�el, The total least squares problem andredu
tion of data in AX ≈ B, in preparation.(with Z. Strako² and M. Ple²inger)Hogben, Leslie, Iowa State University, Ames, Iowa, USA[Plenary, Mon. 8:20�9:15℄Minimum Rank Problems: Re
ent DevelopmentsThis talk will survey re
ent developments in the problem of determining the minimum rank of families ofmatri
es des
ribed by a graph, digraph or pattern.Horn, Roger, University of Utah, Salt Lake City, USA[CT, Mon. 12:00, Room 3℄A Canoni
al Form for Quasi-Real Normal Matri
es Under Real Orthogonal SimilarityA square 
omplex matrixA is quasi-real normal (QRN) if (a) it is normal, (b) the 
onjugate of every eigenve
toris an eigenve
tor (possibly with a di�erent eigenvalue), and (
) its null spa
e is self 
onjugate. We show that Ais QRN if and only if it is normal and either it 
ommutes with its 
onjugate or it 
ommutes with its transpose(ea
h implies the other). The 
lass of QRN matri
es is 
losed under the equivalen
e relation of real orthogonalsimilarity, whi
h is simultaneously a similarity, a unitary ∗
ongruen
e, and a unitary T 
ongruen
e. We give ablo
k diagonal 
anoni
al form for QRN matri
es under this equivalen
e relation.(with Geo�rey R. Goodson)Iannazzo, Bruno, Dipto. di Fisi
a e Mat., Università dell'Insubria, Como, Italy[MS6, Tue. 11:50, Room 1℄ Matrix iterations for matrix fun
tionsMatrix fun
tions od the type f(A), where f is some 
omplex fun
tion and A is a square matrix, are often
omputed by matrix �xed-point iterations. These iterations are of the form Xk+1 = ϕ(Xk), where ϕ maydepend on A. We show how the 
onvergen
e of a matrix iteration is related to the 
onvergen
e of the sameiteration applied to the eigenvalues of A and we dis
uss the lo
al 
onvergen
e from whi
h the numeri
alstability of the iteration strongly depends. We 
onsider some spe
i�
 examples regarding the matrix pth root.
32



Im, Bokhee, Chonnam National University, Gwangju, Korea(Rep. of)[CT, Thu. 11:00, Room 5℄Representations of trilinear produ
ts in Comtrans algebrasUnlike the set of all Lie algebras, the set of all 
omtrans algebras on a given module has a linear stru
ture.Let E be a �nite-dimensional ve
tor spa
e over a �eld k. Then we want to determine whi
h trilinear produ
ts
xyz on E may be represented as linear 
ombinations of the 
ommutator and translator of a 
omtrans algebraon E in the manner of the following so-
alled bogus produ
t:

xyz =
1

6
[x, y, z] +

1

6
[y, z, x] +

1

6
[z, x, y] +

1

3
〈x, y, z〉 − 1

3
〈z, x, y〉.If the underlying �eld is not of 
hara
teristi
 3, then we show that the ne
essary and su�
ient 
ondition forsu
h a representation is

xxy + xyx+ yxx = 0 ,a 
ondition des
ribed as strong alternativity. Indeed, if the underlying �eld is also not of 
hara
teristi
 2, thenea
h strongly alternative trilinear produ
t is represented as the bogus produ
t of a 
omtrans algebra. Anappropriate representation for the 
ase of 
hara
teristi
 2 will also be given.(with Jonathan D. H. Smith)Jiang, Er-Xiong, Shanghai University, Shanghai, China[Plenary, Mon. 9:20�10:15℄Some inverse eigenvalue problems for Ja
obi matri
esLet
T1,n =




α1 β1

β1 α2
. . . 0. . . . . . . . .. . . . . . βn−10

βn−1 αn




.Denote
Tp,q =




αp βp 0
βp αp+1 βp+1

βp+1
. . . . . .. . . . . . βq−1

0 βq−1 αq




(p < q ≤ n.)If all βi > 0 i = 1, 2, ..., n− 1,we 
all T1,n a Ja
obi matrix.The following 3 kinds of inverse eigenvalue problem for Ja
obi matri
es will be dis
ussed1.(K) problem [1℄, [2℄: Given 3 sets of real numbers {λ1, λ2, ..., λn}, {µ1, µ2, ..., µk−1}, {µk, µk+1, ..., µn−1},�nd a n × n Ja
obi matrix T1,n,su
h that λ1, λ2, ..., λn are eigenvalues of T1,n,µ1, µ2, ..., µk−1 are eigenvaluesof T1,k−1 and µk, µk+1, ..., µn−1 are the eigenvalues of Tk+1,n.2. Double dimension problem [3℄ [4℄ [5℄ [6℄: given a Ja
obi matrix T1,nand given 2n real numbers
{λ1, λ2, ..., λ2n}, �nd a 2n × 2n Ja
obi matrix T1,2n, su
h that T1,n is a leading prin
ipal submatrix of T1,2nand λ1, λ2, ..., λ2n are the eigenvalues of T1,2n. 33



A periodi
 Ja
obi matrix is an n× n real symmetri
 matrix of the form
Jn =




α1 β1 βn

β1 α2 β2 0

0 β2 α3
. . . 0... . . . . . . . . . ...

0
. . . αn−1 βn−1

βn 0 · · · 0 βn−1 αn




.

where βi > 0, i = 1, 2, ..., n.3. Periodi
 problem [4℄ [5℄, [7℄: Given two sets of real numbers {λ1, λ2, ..., λn} and {µ1, µ2, ..., µn−1},�nd a
n× n periodi
 Ja
obi matrix Jn,su
h that λ1, λ2, ..., λn are the eigenvalues of Jn and µ1, µ2, ..., µn−1 are theeigenvalues of T1,n−1 whi
h is the (n− 1)× (n− 1)leading prin
ipal submatix of JnReferen
es[1℄ G. M. Gladwell and N. B. Willms, The re
onstru
tion of a tridiagonal system from its frequen
y resposeat an interior point, Inverse Problems, 4, 1988, pp.1013-1024.[2℄ Er-Xiong Jiang, An inverse eigenvalue problem for Ja
obi matri
es, J. Comput. Math. 21, 2003, pp.569-584.[3℄ H. Ho
hstadt, On the Constru
tion of a Ja
obi Matrix from Mixed Given Data, Linear Algebra and ItsAppl., 28, 1979, pp. 113-115.[4℄ S. F. Xu,An Introdu
tion to Inverse Algebrai
 Eigenvalue Problems, Peking University Press, Beijing, 1998.[5℄ D. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems 3,pp.395-622,1987.[6℄ Hai-xia Liang, Er-xiong Jiang, An inverse eigenvalue problem for Ja
obi matri
es, J. Comput. Math. Vol.25,No.5,2007,pp.620-630.[7℄ Yinghong Xu, Er-xiong Jiang, An inverse eigenvalue problem for periodi
 Ja
obi matri
es, Inverse problems,23, 2007, pp. 165-181.Karow, Mi
hael, Te
hnis
he Universitat, Berlin, Germany[MS2, Fri. 11:50, Room 1℄Pseudospe
tra and Stability radii for Hamiltonian Matri
esWe 
onsider the variation of the spe
trum of Hamiltonian matri
es under Hamiltonian perturbations. The�rst part of the talk deals with the asso
iated stru
tured pseudospe
tra. We show how to 
ompute these setsand give some examples. In the se
ond part we dis
uss the robustness of linear stability. In parti
ular wedetermine the smallest norm of a perturbation that makes the perturbed Hamiltonian matrix unstable.
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Kirkland, Steve, University of Regina, Regina, Canada[MS1, Wed. 11:25, Room 1℄Constru
ting Lapla
ian Integral Split GraphsGiven a graph G, its Lapla
ian matrix, L, is de�ned as L = D − A, where A is the (0, 1) adja
en
y matrixfor G, and D is the diagonal matrix of vertex degrees. A graph is Lapla
ian integral if the spe
trum of itsLapla
ian matrix 
onsists entirely of integers. A split graph is one whose vertex set 
an be partitioned as
A ∪B, where A indu
es a 
lique and B indu
es an independent set of verti
es. Merris has posed the problemof identifying and/or 
onstru
ting Lapla
ian integral split graphs. Using balan
ed in
omplete blo
k designs,Diophantine equations, and Kroneker produ
ts, we des
ribe a te
hnique for 
onstru
ting in�nite families ofLapla
ian integral split graphs, thus partially addressing the problem posed by Merris.(with N. Abreu, M. de Freitas and R. Del Ve

hio)Klasa-Bompoint, Ja
queline, Dawson College, Montreal, Canada[MS4, Tue. 16:55, Room 1℄Few pedagogi
al s
enarios in Linear Algebra with Cabri and MapleWith the appearan
e of very rapidly improving te
hnologies, sin
e the 90's we have fa
ed many reformmovements introdu
ing mu
h more importan
e on the visualization of mathemati
al 
on
epts together withmore so
ialization (Collaborative learning). Just to name few reform groups in the USA: Harvard Groupfor Cal
ulus and for Linear algebra: ATLAST organized by S. Leon after the ILAS symposium of 1992 andLACSG started with D. Lay in 1990 and then 
ontinued with D. Carlson (1993) and many others. Howeversome resear
hers like J.P Dorier and A. Sierpinska were not optimist and de
lared �It is 
ommonly 
laimed inthe dis
ussions about the tea
hing and learning of linear algebra, that linear algebra 
ourses are badly designedand badly taught and that no matter how it is taught, linear algebra remains a 
ognitively and 
on
eptuallydi�
ult subje
t". On the other hand, M. Artigue advo
ates strongly the use of CAS's but with a 
onstantawareness that Mathemati
s learned in su
h an environment of software are 
hanging. How do we really tea
hLinear algebra now? See the standard Anton's text book and then the mu
h praised book �Linear Algebra andits appli
ations" written in 1994 by D. Lay. How hard is it really now to tea
h and to learn this topi
? We shallrepeat like J. Hillel, A. Sierpinska and T. Dreyfus that the tea
hing of Linear Algebra o�ers to students many
ognitive problems related to three thinking modes intertwined: geometri
, 
omputational (with matri
es)and algebrai
 (Symboli
). We 
ould follow the APOS theory of E. Dubinsky and see that it will be ne
essaryfor the tea
her to pro
eed to a geneti
 de
omposition of every mathemati
al 
on
ept of Linear Algebra beforebeing able to 
on
eive a pedagogi
 s
enario that will have to bring students from the �a
tion" to the moreelaborated state of �pro
ess" and then lu
kily make them rea
h the most abstra
t levels of �obje
ts" and evenhigher stru
tured �s
hemes". While devising my 
lasses and 
omputer-labs to my students in Linear Algebra,I was inspired by all good ideas presented by the mentioned authors and many others as: G. Bagni, J.L. Dorierand Fis
hbein, D. Gentner, G. Harel, J. Hillel, J.G. Molina Zavaleta. I am a mathemati
ian who tea
hes ina CEGEP, whi
h is a spe
ial 
ollege of Québe
's provin
e in Canada. Pedagogi
al s
enarios based on Cabriand Maple will be presented in this study for some few stumbling blo
ks in the learning of Linear Algebra:linear transformations, eigenve
tors and eigenvalues, quadrati
 forms and 
oni
s with 
hanges of bases, �nallysingular values. When immersed in this software environment, I restri
t all the demonstrations to R2 and R3.Can visualization and manipulation improve and fa
ilitate the learning of Linear algebra? As I am biased,of 
ourse I will say yes; really we would need a strong evaluation and analysis of this tea
hing pro
edureto be able to give answers. As Ed. Dubinsky would say �This situation provides us with the opportunity tobuild a synthesis between the abstra
t and 
on
rete." The interplay between 
on
rete phenomena and abstra
tthinking." I will add also, that students working in teams around 
omputers (or even graphi
 
al
ulators) only
oa
hed by the tea
her at times, be
ome experts in the dis
ipline they experiment with. About the roles of theCAS Maple and the geometri
al software, we will agree with the Cabrilog slogan �Cabri makes tough maths
on
epts easier to learn thanks to its kinaestheti
 learning approa
h!" while Maple a
ts like a good big brother,35



doing all the boring 
al
ulations for the students and also produ
ing instru
tive animations, unfortunatelymostly programmed by the tea
her.Klein, Andre, University of Amsterdam, Amsterdam, The Netherlands[MS6, Tue. 12:15, Room 1℄Tensor Sylvester matri
es and information matri
es of multiple stationary pro
essesConsider the matrix polynomials A(z) and B(z) given by
A(z) =

p∑

j=0

Ajz
jand

B(z) =

q∑

j=0

Bjz
j,where A0 ≡ B0 ≡ In.Gohberg and Lerer [1℄ study the resultant property of the tensor Sylvester matrix

S⊗(−B,A) , S(−B ⊗ In, In ⊗A)or
S⊗(−B,A) =




(−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In 0n2×n2 · · · 0n2×n2

0n2×n2

. . . . . . . . . . . . ...... . . . . . . . . . . . . 0n2×n2

0n2×n2 · · · 0n2×n2 (−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In
In ⊗ In In ⊗A1 · · · In ⊗Ap 0n2×n2 · · · 0n2×n2

0n2×n2

. . . . . . . . . . . . ...... . . . . . . . . . . . . 0n2×n2

0n2×n2 · · · 0n2×n2 In ⊗ In In ⊗A1 · · · In ⊗Ap


. In [1℄ it is proved that the matrix polynomials A(z) and B(z) have at least one 
ommon eigenvalue if andonly if detS⊗(−B,A) = 0 or when the matrix S⊗(−B,A) is singular. In other words, the tensor Sylvestermatrix S⊗(−B,A) be
omes singular if and only if the s
alar polynomials det A(z) = 0 and det B(z) = 0have at least one 
ommon root. Consequently, it is a multiple resultant. In [2℄, this property is extendedto the Fisher information matrix of a stationary ve
tor autoregressive and moving average pro
ess, VARMApro
ess. The purpose of this talk 
onsists of displaying a representation of the Fisher information matrix ofa stationary VARMAX pro
ess in terms of tensor Sylvester matri
es, the X stands for exogenous or 
ontrolvariable. The VARMAX pro
ess is of 
ommon use in sto
hasti
 systems and 
ontrol.Kopparty, Bhaskara Rao, Indiana State University, Terre Haute, IN, USA[CT, Mon. 18:10, Room 2℄ Generalized inverses of in�nite matri
esWe pose several problems about generalized inverses of in�nite matri
es. We shall review the literature andprove some positive results. 36



Körtesi, Peter, University of Miskol
, Miskol
, Hungary[CT, Thu. 10:35, Room 5℄Using Linear Algebra in Tea
hing Hamilton Quaternions and GraphsHamilton quaternions are usually introdu
ed as generalization of 
omplex numbers respe
ting the basi
identities. We present a way to use matri
es to introdu
e quaternions and study their properties, using anisomorphism between the two skew-�eld stru
tures. The Eulerian and Hamiltonian trails and 
ir
uits 
an bedes
ribed as well using some adja
en
y type matri
es in spe
ial rings. The method to be presented is the sametime a su�
ient 
ondition to de
ide weather the graph is Hamiltonian or not.Kressner, Daniel, ETH Zuri
h, Zuri
h, Switzerland[Plenary, Tue. 9:10�10:05℄ Matrix produ
t eigenvalue problemsIn its simplest form, the produ
t eigenvalue problem 
onsists of determining the eigenvalues and eigenve
torsof a matrix produ
t
Π = ApAp−1 · · ·A1with n × n matri
es Ak. The most general form is obtained by admitting re
tangular as well as invertedfa
tors.The aim of this talk is to provide an overview of theoreti
al and numeri
al developments for su
h eigenvalueproblems.On the theoreti
al side, we �rst relate existing 
anoni
al forms to the Krone
ker-Weierstrass form of an em-bedded pn×pn blo
k 
y
li
 matrix pen
il. This embedding also allows to derive various eigenvalue/eigenve
torperturbation results in a 
onvenient and elegant manner. In parti
ular, it is shown that an appropriate exten-sion of pseudospe
tra to matrix produ
ts poses seemingly intra
table 
omputational 
hallenges.On the numeri
al side, we mainly fo
us on QR and Krylov subspa
e type methods. The main issue is toformulate the method in su
h a way that the expli
it 
omputation of the matrix produ
t or parts thereof is
ompletely avoided. The periodi
 QR algorithm is su
h a method, suitable for produ
ts with medium-sizeddense fa
tors. Novel pre- and post-pro
essing steps are presented that admit (a) the treatment of re
tangularfa
tors, and (b) the e�
ient 
omputation of invariant subspa
es. For produ
ts with large-sized fa
tors, avariant of the impli
itly restarted Arnoldi algorithm is presented.Based on the presented results, a Fortran 77/Matlab software pa
kage for solving produ
t eigenvalueproblems is being developed. Matlab's operator overloading fa
ilities lead to a parti
ularly 
onvenient userinterfa
e for dealing with matrix produ
ts.This is partly joint work with Robert Granat and Bo Kågström, Umeå University.La�ey, Thomas, University College Dublin, Dublin, Ireland[MS8, Mon. 17:45, Room 1℄Some 
onstru
tive te
hniques in the nonnegative inverse eigenvalue problemLet σ := (λ1, ... , λn) be a list of 
omplex numbers and let

sk := λk
1 + ... + λk

n, k = 1, 2, 3, ...be the asso
iated Newton power sums. A famous result of Boyle and Handelman states that if all the sk arepositive, then there exists a nonnegative integer N su
h that
σN := (λ1, ... , λn, 0, ... , 0), (N zeros)is the spe
trum of a nonnegative (n+N)× (n+N) matrix A. The problem of obtaining a 
onstru
tive proofof this result with an e�e
tive bound on the minimum number N of zeros required has not yet been solved.37



We present a number of te
hniques for 
onstru
ting nonnegative matri
es with given nonzero spe
trum σ,and use them to obtain new upper bounds on the minimal size of su
h an A, for various 
lasses of σ. This isjoint work with Helena Smigo
.(with �migo
, Helena)Lan
aster, Peter, University of Calgary, Calgary, Canada[MS6, Tue. 16:55, Room 2℄ Linearization of Matrix PolynomialsA pre
ise form will be given to the notion of linearization of matrix polynomials, with spe
ial referen
e tothe notion of an eigenvalue at in�nity. This will be illustrated with linearizations of matrix polynomials whenrepresented in various polynomial bases; orthogonal and otherwise. This is a report on 
ollaborative workwith A. Amiraslani(University of Calgary) and R.W. Corless (University of Western Ontario).(with A. Amiraslani and R.W. Corless)Lee, Gue Myung, Pukyong National University, Busan, Korea[CT, Thu. 18:35, Room 4℄Complexity Analysis of the Primal-Dual Interior Point Method for Se
ond-order ConeOptimization ProblemThe purpose of this talk is to extend the Bai et al.'s 
omplexity results for a linear program to a se
ond-order
one optimization (SOCO) problem. We de�ne a proximity fun
tion for SOCO by a kernel fun
tion introdu
edby Bai et al. [SIAM J. Optim., 13(2003), 766-782℄ and using the proximity fun
tion, we formulate an algorithmfor a large-update primal-dual interior-point method (IPM) for SOCO and give its 
omplexity analysis, andthen we show that the worst-
ase iteration bound for our IPM is O(
√
N logN log N

ǫ ).(with Bo Kyung Choi)Lee, Hosoo, Kyungpook National University, Daegu, Korea[CT, Mon. 18:35, Room 4℄Contra
tions and nonlinear matrix equations on positive de�nite 
onesIn this talk we 
onsider the semigroup generated by the self-maps on the open 
onvex 
one of positivede�nite matri
es of translations, 
ongruen
e transformations and matrix inversion that in
ludes symple
ti
Hamiltonians and show that every member of the semigroup 
ontra
ts any invariant metri
 distan
e inheritedfrom a symmetri
 gauge fun
tion. This extends results of Bougerol for the Riemannian metri
 and of Liverani-Wojtkowski for the Thompson part merti
. A uniform upper bound of the Lips
hitz 
ontra
tion 
onstant fora member of the semigroup is given in terms of the minimum eigenvalues of its determining matri
es. Weapply this result to a variety of nonlinear equations in
luding Stein and Ri

ati equations for uniqueness andexisten
e of positive de�nite solutions and �nd a new 
onvergen
e analysis of iterative algorithms for thepositive de�nite solution depending only on the least 
ontra
tion 
oe�
ient for the invariant metri
 from thespe
tral norm.(with Yongdo Lim)
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Leon, Steven, University of Massa
husetts Dartmouth, Dartmouth, MA 02747, USA[MS4, Tue. 17:20, Room 1℄ When MATLAB Gives "Wrong" AnswersOne of the main di�eren
es between tea
hing the standard linear algebra 
ourse and a 
ourse in numeri
allinear algebra is that in the latter 
ourse all 
omputations are done using �nite pre
ision arithmeti
. One wayto illustrate the importan
e of this di�eren
e is to look at examples where 
omputational software pa
kagessu
h as MATLAB appear to be giving wrong answers. In this talk we examine four or �ve su
h s
enarios. Inea
h 
ase we look at examples and explain how and why MATLAB arrives at its answers. In our �nal examplewe examine a MATLAB program that 
learly produ
es an impossible answer. In this 
ase, when the authorof the program tried to debug it by printing out intermediate results, the value of the 
omputed solution
hanged. What is going on? Is MATLAB exhibiting some sort of Heisenberg e�e
t? All will be explained atthe talk.Li, Chi-Kwong, College of William and Mary, Williamsburg, USA[MS2, Fri. 11:25, Room 1℄Eigenvalues of the sum of matri
es from unitary similarity orbitsLet A and B be n × n 
omplex matri
es. Chara
terization is given for the set E(A,B) of eigenvalues ofmatri
es of the form U∗AU + V ∗BV for some unitary matri
es U and V . Consequen
es of the results aredis
ussed and 
omputer algorithms and programs are designed to generate the set E(A,B). The results re�nethose of Wielandt on normal matri
es. Extensions of the results to the sum of matri
es from three or moreunitary similarity orbits are also 
onsidered.(with Yiu-Tung poon and Nung-Sing Sze)Loiseau, Jean Ja
ques, IRCCyN-CNRS, Nantes, Fran
e[MS7, Wed. 11:00, Room 3℄Robust stability of positive di�eren
e equationsWe 
onsider the system of di�eren
e equations
x(t) =

ν∑

k=1

akx(t− βk),where ak ∈ R, βk ∈ R, for k = 1 to ν. We assume that the delays are in in
reasing order, 0 = β0 < β1 <
β2 < . . . < βν . Su
h equation appear as models in biology, e
onomy, and from the wave equation (see [3℄for examples). The stability of this system was addressed in the referen
es [1�4℄. They provide a 
ompleteanalysis, and point out a very spe
ial phenomenon, that the zeros of the 
hara
teristi
 equation

1−
ν∑

k=1

ake−βks = 0 ,where s ∈ C, do not 
ontinuously depend on the parameters βk. The result is that, if the delays are rationallyindependant, the system is stable (both in the sense of L2�stability and of expenential stability) if and onlythe following holds
ν∑

k=1

|ak| < 1 .39



At the 
ontrary, when the delays are rationally dependent, this 
ondition is su�
ient for the stability, but notne
essary. The rational dependan
e of the 
oe�
ients is not a 
ontinuous property, whi
h somehow explainswhat happens. As a typi
al example, one 
an 
he
k that the system
x(t) =

3

4
x(t− 1)− 3

4
x(t− 2)is stable. But, sin
e 3/4 + 3/4 > 1, one 
an see that the stability is lost by arbitrary little perturbations ofthe delays. Almost all the systems of the form

x(t) =
3

4
x(t− 1)− 3

4
x(t− 2− ǫ) ,are unstable, for example ǫ = π/100 gives an unstable system. Two remarks 
an now be done. The �rstone is that Max-plus linear systems are also di�eren
e equations. Su
h systems are obtained as algebrai
models of timed marked graphs, a spe
ial 
lass of Petri nets, where the delays are asso
iated to the edges of anoriented graph, they 
orrespond to the minimal time to 
ross this edges. As it is well known (see for instan
e[5℄ or [6℄), the asymptoti
 behaviour of su
h a graph is given by the eigenvalue, in the Max-Plus sen
e, ofthe 
orresponding matrix. This eigenvalue 
an be expressed analiti
ally as the maximum mean weight of theelementary 
ir
uits of the graph. This quantity depends 
ontinuously on the parameters of the graph, that arethe delays and some 
oe�
ients 
alled initial marks. The asymptoti
 behaviour of Max-Plus linear systemsdo not depend on the algebrai
 dependan
e of the delays, at the 
ontrary of usual di�eren
e equations. Ourse
ond remark, whi
h now follows, in some sense explains that the di�eren
e of behaviour between Max-Plussystems and usual di�eren
e equations is not a paradox. In many appli
ations, the 
oe�
ients ak of our basi
equation are positive. Hen
e the 
onsidered equation is 
alled a positive di�eren
e equation. We 
an showthat the zeros of the 
hara
teristi
 equation of a positive di�eren
e equation 
ontinuously depends on theparameters ak and βk. In parti
ular for these systems too, the algebrai
 dependan
e of the delays does notthe matter, and in every 
ase the system is stable if and only if the 
ondition above is satis�ed, the sum ofthe 
oe�
ients ak is less than 1. Sin
e the 
ondition is not delay dependant, it is independant to variationsof the delay, and one therefore says that the stability is robust. To show this result, we denote µ the uniquereal root of the equation

1−
ν∑

k=1

ake−βkµ .As shown in [2℄, µ is an upper bound of the real parts of the zeros of the above 
hara
teristi
 equation. If inaddition the 
oe�
ients ak are positive, one 
an show that µ is a zero of the 
hara
teristi
 equation, whi
hleads to the 
on
lusion. Thanks to Perron-Frobenius theorem, a similar result 
an be des
ribed in the 
ase ofmultivariable positive di�eren
e equations.[1℄ D. Henry, Linear autonomous neutral fun
tional di�erential equations, J. Di�erential equations, vol.15,106-128, 1974.[2℄ C. E. Avellar and J. K. Hale, On the zeros of exponentials polynomials, Journal of Mathemati
al Analysisand Appli
ations, vol. 73, 434-452, 1980.[3℄ V. Kolmanovski and V.R. Nosov, Stability of fun
tional di�erential equations, A
ademi
 Press, London,1986.[4℄ J.K. Hale and S.M. Verduyn Lunel, Introdu
tion to fun
tional di�erential equations, Springer Verlag, NewYork, 1993.[5℄ M. Gondran, M. Minoux and S. Vajda, Graphs and Algorithms, John Wiley and Sons, 1984.[6℄ F. Ba

elli, G. Cohen, G.J. Olsder and J.P. Quadrat. Syn
hronization and Linearity. An Algebra forDis
rete Event Systems. Wiley, 1992.(with M. Di Loreto)
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Ma
hado, Silvia, Ponti�
ia Universidade Catoli
a de São Paulo, São Paulo, Brasil[CT, Mon. 16:55, Room 2℄GPEA's resear
hes about the meta resour
es in tea
hing and learning the notion of basis of ave
tor spa
eSin
e the late 90's we have been resear
hing the development of the notion of basis of a ve
tor spa
e in our�rst Linear Algebra 
ourse. This 
on
ept was 
hosen to be explored in our investigations be
ause it has anessential role in this theme. Robert e Robinet (1993) name meta mathemati
s something that is said or writtenwhen information is given about the mathemati
al fun
tioning and the use of its 
on
epts, that is when wetalk ABOUT Mathemati
s, beyond the stri
tly mathemati
al. To avoid 
onfusion about the meaning of theterm meta mathemati
s, utilized in Literature under di�erent meanings, we adopted the term meta resour
esto design what the authors 
all meta mathemati
s. A meta resour
e 
an be
ame a lever to the studentwhen he is learning about a mathemati
al notion. When a meta resour
e is 
apable of be
oming a lever tothe understanding of the desired mathemati
al 
on
ept, Robert and Robinet 
all it meta lever. We shouldalso highlight the importan
e given by Dorier (1997) to this resour
e when he suggests that one of the mostimportant axis to be investigated in the learning and tea
hing of Linear Algebra is about the use of meta leverand about the evaluation of its real e�e
ts on learning. We interpret the tea
her's spee
h or the presentationof a theme in the textbook, as meta lever, in 
ases when there are information in it able to make the studentthink about his own knowledge, his mistakes, his pro
edures, helping him to understand a new mathemati
alnotion. We 
onsider not only the tea
her's spee
h, but also any a
tivity proposed and/or elaborated by him,that favors the students' 
omprehension about a notion or a topi
, su
h as meta lever. Some papers writtenseeking to answer the question �What is the role of the meta resour
es in the learning of the notion of basisin Linear Algebra?� are next. Considering the statement made by Chevallard (1991) about the la
k of thetea
her's in�uen
e on dida
ti
s transposition, Behaj and Arsa
 (1998) wrote a paper where they dis
ussedthe size of the in�uen
e that di�erent Algebra tea
hers have on dida
ti
s transposition in their 
ourses. The
on
lusion of this paper 
ontested Chevallard's statement by showing that ea
h tea
her has his point of viewon the best way to write a learning text, what brings di�eren
es even between two 
ourses that follow thesame (tea
hing) plan. (BEHAJ, A ARSAC, G., p. 362). This investigation and the analysis made by theauthors revealed that ea
h tea
her's autonomy (to prepare the 
lass and to develop them) 
hanges a

ordingto the amount of dependen
e of the textbook and to his resear
h a
tivities. Knowing that not every universitytea
her resear
hes Algebra-related subje
ts and that many of them only use textbooks, Araújo (2002) analyzedthe development of the basis notion in three of the most utilized textbooks in traditional universities. Theauthor 
ame to the 
on
lusion that there are few meta resour
es able to be
ome meta levers to the student inthose books. BEHAJ and ARSAC's 
onsiderations about the tea
her's interferen
e in dida
ti
al transpositionsuggested that Padredi (2003) investigated whi
h meta resour
es about basis emerge from the 6 interviewedAlgebra tea
hers' spee
h. Padredi utilized three prin
iples that Harel (2000) 
onsiders ne
essary to learnand tea
h Linear Algebra to elaborate the s
ript and to analyze the interviews. Those prin
iples are thoseof 
on
reteness, ne
essity and generalizibility. The author dis
overed that the tea
hers showed many metaresour
es able to be
ome meta lever when learning basis notion. Barbosa de Oliveira (2005), fa
ing thestatement above, observed the 
lasses of a Linear Algebra tea
her lightening the meta resour
es utilized inthe development of the basis notion and 
he
king, by using interviews, with whi
h students of their 
lass theybe
ame meta levers. This way, the resear
hes already �nished and the ones still in pro
ess point some resultsthat eviden
e the role of the meta resour
es in learning the basis notion in Linear Algebra.Referen
esARAUJO, C. V. B. A meta matemáti
a no livro didáti
o de Álgebra Linear. Dissertação de Mestrado (Pro-grama de Edu
ação Matemáti
a) : Pontifí
ia Universidade Católi
a de São Paulo. 2002.BARBOSA de OLIVEIRA, L.C. Como fun
ionam os re
ursos meta em aula de Álgebra Linear? Dissertaçãode Mestrado (Programa de Edu
ação Matemáti
a) : Pontifí
ia Universidade Católi
a de São Paulo. 2005.BEHAJ, A.; ARSAC, G La 
on
eption d'un 
ours d'Algèbre Linèaire . Re
her
hes en Dida
tique des Mathé-matiques, v.18, no 3, pp. 333-370, 1998.CHEVALLARD, Y. La transposition dida
tique, du savoir savant au savoir enseigné. Reed. 1991. La PenséeSauvage. Grenoble. 1991. 41



DORIER, J. L. L'Enseignement de L'Algebre Linéaire en Question. La Pensée Sauvage. Grenoble. 1997.HAREL, G. Three Prin
iples of Learning and Tea
hing Mathemati
s, Chapter 5, On the Tea
hing of LinearAlgebra. Ed. DORIER. Kluwer. 2000.PADREDI, Z.L.N. As alavan
as meta no dis
urso do professor de Algebra Linear. Dissertação de Mestrado(Programa de Edu
ação Matemáti
a) : Pontifí
ia Universidade Católi
a de São Paulo. 2002.ROBERT, A.; ROBINET, J. Prise en 
ompte du meta en dida
tique des Mathématiques. In Cahier DIDIREM.V.21, Ed. IREM. Paris. 1993.(with Bian
hini, B. L. and Maranhão, M. C. S. A.)Mara

i, Mirko, Dept of Mathemati
s and CSCI, Siena University, Siena, Italy[MS4, Mon. 11:35, Room 1℄Basi
 notions of Ve
tor Spa
e Theory: students' models and 
on
eptionsCarlson (1993) uses the image of the fog rolling in to des
ribe the 
onfusion and disorientation whi
h his stu-dents experien
e when getting to the basi
 notions of Ve
tor Spa
e Theory (VST). There is truly a widespreadsense of the inadequa
y of the tea
hing of Linear Algebra. On a

ount of that 
ommon per
eption and of theimportan
e of Linear Algebra as a prerequisite for a number of dis
iplines (math, s
ien
e, engineering,...), inthe last twenty years several studies were 
arried out on Linear Algebra edu
ation. Those studies broughtundeniable progresses for understanding students' di�
ulties in Linear Algebra. As Dorier and Sierpinskae�e
tively synthesized in their literature survey (2001), three di�erent kinds of sour
es of students' di�
ultiesin Linear Algebra espe
ially emerge from the studies on that topi
s:1. the fa
t that Linear Algebra tea
hing is 
hara
terized by an axiomati
 approa
h, whi
h is per
eived bystudents as super�uous and meaningless;2. the fa
t that Linear Algebra is 
hara
terized by the 
ohabitation of di�erent languages, systems ofrepresentations, modes of des
ription;3. the fa
t that 
oping with those features requires the development of theoreti
al thinking and 
ognitive�exibilityRe
ently more studies were 
arried out, whi
h in our opinion still �t well Dorier and Sierpinska's synthesis.In this talk I will fo
us on some aspe
ts of students' di�
ulties in ve
tor spa
e theory (VST), drawn from mydo
torate resear
h proje
t. That proje
t was meant to investigate graduate and undergraduate students' errorsand di�
ulties in VST. Through that work I intended to 
ontribute to Linear Algebra Edu
ation resear
h�eld, fo
using on 
ognitive di�
ulties related to spe
i�
 VST notions rather than to general features of LinearAlgebra: a seemingly less explored path.The study involved 15 (graduate or undergraduate) students in mathemati
s, presented with two or threedi�erent VST problems to be solved in individual sessions. The methodology adopted was that of the 
lini
alinterview (Ginsburg, 1981). The study highlighted a number of students' di�
ulties related to the notionsof linear 
ombination, linear dependen
e/independen
e, dimension and spanning set. The di�
ults, errorsand empasses emerged were analysed through the lenses of di�erent theoreti
al frameworks: the theory ofta
it intuive models (Fis
hbein, 1987), Sfard's pro
ess-obje
t duality theory (Sfard, 1991) and the 
k
 model(Bala
he�, 1995). The di�erent analyses lead to formulate hypotheses, whi
h a

ount for a variety of students'di�
ulties. Though not antitheti
al to ea
h other, those analyses are diversi�ed, put into eviden
e di�erentaspe
ts from di�erent perspe
tives. In this talk I brie�y present the results of those analyses and a �rst tentativeintegrating analysis, 
ombining di�erent hints and perspe
tives provided by the frameworks mentioned above.More spe
i�
ally, that attempt lead to the formulation of the hypothesis that many di�
ults experien
ed bystudents are 
onsistent with the possible a
tivation of an intuitive model of �
onstru
tion" related to basi
notion of VST. In the talk we will better spe
ify that hypothesis showing how it 
ould 
ontribute to betterorganize and explain students' do
umented di�
ulties.42
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al Interview in Psy
hologi
al Resear
h on Mathemati
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hniques. For the Learning of Mathemati
s, v. 1, 3 pp. 4-11.Sfard A., 1991; On the dual nature of mathemati
al 
on
eptions: re�e
tions on pro
esses and obje
ts asdi�erente sides of the same 
oin, Edu
ational Studies in Mathemati
s, v. 22, pp. 1-36.Marovt, Janko, Institute of Mathemati
s, Physi
s and Me
hani
s, Ljubljana, Slovenia[CT, Thu. 11:00, Room 4℄Homomorphisms of matrix semigroups over division rings from dimension two to threeLet D be an arbitrary division ring and Mn(D) the multipli
ative semigroup of all n×n matri
es over D. Wewill des
ribe the general form of non-degenerate homomorphisms from M2(D) to M3(D).(with Gregor Dolinar)Marques, Maria-da-Graça, University of Algarve and CELC, Faro, Portugal[CT, Thu. 16:55, Room 4℄Some 
onditions for the 
ommutativity of matrix patternsA matrix pattern P is an array of ∗'s and 0's. A real matrix A = (ai,j) belongs to pattern P if its dimensionsagree with those of P and ai,j 6= 0 if and only if the i, j entry of P is a ∗. We say that two n-by-n patterns
P and Q 
ommute (or allow 
ommutativity) if there exist matri
es A ∈ P and B ∈ Q that 
ommute, ie
AB = BA. In [1℄ some ne
essary and some su�
ient 
onditions are given for the 
ommutativity with the full(all ∗'s) pattern F . In this talk we dis
uss the ne
essary 
onditions in [1℄ and present some 
ases where theyare su�
ient.[1℄ C. R. Johnson and M. G. Marques, Patterns of 
ommutativity: the 
ommutant of the full pattern, Ele
troni
Journal of Linear Algebra, 14, 2005.(with C. R. Johnson)Martínez, José-Javier, Universidad de Al
alá, Al
alá de Henares, Spain[CT, Tue. 18:35, Room 4℄ Polynomial regression in the Bernstein basis
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The problem of polynomial regression in whi
h the usual monomial basis is repla
ed by the Bernstein basisis 
onsidered. The 
oe�
ient matrix A of the overdetermined system to be solved in the least-squares sense isthen a re
tangular Bernstein-Vandermonde matrix. In order to use the method based on the QR de
omposi-tion whi
h was developed in the 
elebrated paper [1℄, the �rst stage will 
onsist of 
omputing the bidiagonalde
omposition of the 
oe�
ient matrix A by means of an extension to the re
tangular 
ase of the algorithmpresented in [3℄. Starting from that bidiagonal de
omposition, an algorithm for obtaining the QR de
ompo-sition of A due to Koev [2℄ is then applied. Finally, a triangular system is solved by using the bidiagonalde
omposition of the R-fa
tor of A. Some numeri
al experiments showing the behaviour of our approa
h arein
luded.[1℄ G. Golub: Numeri
al methods for solving linear least squares problems. Numeris
he Mathematik 7,206-216 (1965).[2℄ P. Koev: A

urate 
omputations with totally nonnegative matri
es. SIAM J. Matrix Anal. Appl. 29(3),731-751 (2007).[3℄ A. Mar
o, J.-J. Martínez: A fast and a

urate algorithm for solving Bernstein-Vandermonde linearsystems. Linear Algebra Appl. 422, 616-628 (2007)(with Ana Mar
o)Martins, Enide, Centre for Resear
h on Optimization and Control (CEOC), Aveiro, Portugal[CT, Fri. 11:00, Room 3℄On the spe
tra of some graphs like weighted rooted treesLet G be a weighted rooted graph of k levels su
h that, for j ∈ {2, . . . , k}1. ea
h vertex at level j is adja
ent to one vertex at level j− 1 and all edges joining a vertex at level j witha vertex at level j − 1 have the same weight, where the weight is a positive real number.2. if two verti
es at level j are adja
ent then they are adja
ent to the same vertex at level j − 1 and alledges joining two verti
es at level j have the same weight.3. two verti
es at level j have the same degree.4. there is not a vertex at level j adja
ent to others two verti
es at the same level.In this talk we give a 
omplete 
hara
terization of the eigenvalues of the Lapla
ian matrix of G (analogous
hara
terization 
an be done for the adja
en
y matrix of G)). By appli
ation of the these results, we derive anupper bound on the largest eigenvalue of a graph de�ned by a weighted tree and a weigthed triangle atta
hed,by one of its verti
es, to a pendant vertex of the tree.(with Rosário Fernandes and Helena Gomes)Martin, William, North Dakota State University, Fargo, USA[MS4, Tue. 18:10, Room 1℄Integrating learning theories and appli
ation-based modules in tea
hing linear algebraThe resear
h team of The Linear Algebra Proje
t developed and implemented a 
urri
ulum and a pedagogyfor parallel 
ourses in (a) linear algebra and (b) learning theory as applied to the study of mathemati
s withan emphasis on linear algebra. The purpose of the ongoing resear
h, partially funded by the National S
ien
eFoundation, is to investigate how the parallel study of learning theories and advan
ed mathemati
s in�uen
esthe development of thinking of individuals in both domains. The resear
hers found that the parti
ular synergya�orded by the parallel study of math and learning theory promoted, in some students, a ri
h understandingof both domains and that had a mutually reinfor
ing e�e
t. Furthermore, there is eviden
e that the deeper44



insights will 
ontribute to more e�e
tive instru
tion by those who be
ome high s
hool math tea
hers and,
onsequently, better learning by their students. The 
ourses developed were appropriate for mathemati
s ma-jors, pre-servi
e se
ondary mathemati
s tea
hers, and pra
ti
ing mathemati
s tea
hers. The learning seminarfo
used most heavily on 
onstru
tivist theories, although it also examined so
io-
ultural and histori
al per-spe
tives (von Glaserfeld, 1989; Vygotsky, 1978, 1986). A parti
ular theory, A
tion-Pro
ess-Obje
t-S
hema(APOS) (Asiala et al., 1996), was emphasized and examined through the lens of studying linear algebra.APOS has been used in a variety of studies fo
using on student understanding of undergraduate mathemati
s.The linear algebra 
ourses in
lude the standard set of undergraduate topi
s. This paper reports the resultsof the learning theory seminar and its e�e
ts on students who were simultaneously enrolled in linear algebraand students who had previously 
ompleted linear algebra and outlines how prior resear
h has in�uen
ed thefuture dire
tion of the proje
t.(with S. Lo
h, L. Cooley, M. Meagher, S. Dexter and D. Vidakovi
)M
Donald, Judith, Washington State University, Pullman, WA, USA[MS8, Mon. 16:55, Room 1℄Nonnegative and Eventually Nonnegative Matri
esI will dis
uss the interplay between the properties of nonnegative and eventually nonnegative matri
es, andthe role that the inverse eigenvalue problem plays in this relationship.M
Eneaney, William, University of California, San Diego, La Jolla, United States[MS7, Mon. 11:35, Room 2℄ Max-Plus Bases, Corni
es and PruningIn the development of 
omputationally e�
ient algorithms for 
ontrol of sensor tasking, one is fa
ed witha 
ertain 
omputational-
omplexity growth that must be attenuated. At ea
h step of these algorithms, onewould like to �nd a redu
ed-
omplexity representation of the 
urrent solution. These representations take theform of max-plus sums of a�ne fun
tionals. Some important max-plus ve
tor spa
es, or moduloids, are spa
esof 
onvex and semi
onvex fun
tions. In these 
ases, elements of the spa
es may be represented as 
ountablemax-plus linear 
ombinations of linear (
onvex-fun
tions spa
es) and quadrati
 (semi
onvex-fun
tions spa
es)fun
tions. The partial sums naturally approximate the elements from below. In the problem at hand, we arein the 
ase of spa
es of 
onvex fun
tions. One solution to the 
omplexity-redu
tion problem would be simplyto begin generating the 
oe�
ients in max-plus basis expansions, but one is still left with the problem of whi
hbasis fun
tions to 
hoose. More 
arefully, we see that the problem at hand is as follows: Given an elementof the spa
e of 
onvex fun
tions, taking the form of a max-plus sum of M linear fun
tions, and given some�xed, allowable number of approximating a�ne fun
tions, say N < M , �nd the best N a�ne fun
tions toapproximate the original element. Of 
ourse, there is some freedom in the metri
 by whi
h we determine whata good approximation is. We 
hoose a metri
, say a weighted L1 integral, whi
h is 
onvex in a 
ertain sense.One is optimizing this 
ost fun
tional subje
t to the 
onstraint the the �nite, partial sum, is an approximationfrom below. The 
onstraint set takes the form of the union of downward pointing 
ones over the 
onvex hull of
oe�
ients de�ning the original element, a 
onstraint set termed a 
orni
e here. This parti
ular problem formleads to a solution where the optimal N a�ne fun
tionals are a subset of the set whi
h de�nes the originalelement, that is, pruning is optimal. The problem be
omes 
ombinatorial in nature. This stru
ture is notgeneral, and it is not 
lear whi
h 
lasses of problems may also take this spe
ial form.M. Dopi
o, Froilán, Universidad Carlos III, Madrid, Spain[Plenary, Tue. 15:30�16:25℄Impli
it Ja
obi algorithms for the symmetri
 eigenproblem45



The Ja
obi algorithm for 
omputing the eigenvalues and eigenve
tors of a symmetri
 matrix is one of theearliest methods in numeri
al analysis, dating to 1846. It was the standard pro
edure for solving densesymmetri
 eigenvalue problems before the QR algorithm was developed. The Ja
obi method is mu
h slowerthan QR or than any other algorithm based on previous redu
tion to tridiagonal form, and, as a 
onsequen
e,it is not used in pra
ti
e. However, in the last twenty years the Ja
obi algorithm has re
eived 
onsiderableattention be
ause it 
an 
ompute the eigenvalues and eigenve
tors of many types of stru
tured matri
es withmu
h more a

ura
y than other algorithms. The essential idea is to 
ompute �rst an a

urate fa
torization ofthe matrix A, and then to apply the Ja
obi algorithm impli
itly on the fa
tors. The theoreti
al property thatsupports this approa
h is that a fa
torization A = XDXT , where X is well 
onditioned and D is diagonaland nonsingular, determines very a

urately the eigenvalues and eigenve
tors of A, i.e., small 
omponentwiseperturbations of D and small normwise perturbations of X produ
e small relative variations in the eigenvaluesof A, and small variations in the eigenve
tors with respe
t the eigenvalue relative gap. The purpose of thistalk is to present a uni�ed overview on impli
it Ja
obi algorithms, on 
lasses of symmetri
 matri
es for whi
hthey work, on the perturbation results that are needed to prove the a

ura
y of the 
omputed eigenvalues andeigenve
tors, and, �nally, to present very re
ent developments in this area that in
lude a new, simple, andsatisfa
tory algorithm for symmetri
 inde�nite matri
es.Mead, Jodi, Boise State University, Boise, USA[MS3, Fri. 11:50, Room 2℄Cal
ulating Weights in Least Squares Estimation Using the Chi-squared MethodWe will des
ribe the 
hi-squared method for parameter estimation re
ently developed by Mead (2007) andMead and Renaut (submitted). The 
hi-squared 
urve method amounts to solving a weighted least squaresproblem, where the weights are found by ensuring the parameter estimates satisfy the 
hi-squared test. Thismethod is 
onsiderably more e�
ient, and as a

urate as traditional L-
urve and 
ross-
orrelation methods forparameter estimation. We will show results from Hydrology where data error is 
al
ulated by the 
hi-squaredmethod, and parameter estimates are found within a priori data un
ertainty ranges.(with Rosemary Renaut, ASU)Meerbergen, Karl, K.U. Leuven, Heverlee, Belgium[MS2, Thu. 17:45, Room 1℄Re
y
ling Ritz ve
tors in the parameterized Lan
zos methodThe solution of the parameterized system
Ax = f with A = K − ω2M (16)with K real symmetri
, and M symmetri
 positive de�nite arises in appli
ations, in
luding stru
tural engi-neering and a
ousti
s. The parameter ω is often the frequen
y and lies in the frequen
y interval where thenumeri
al model is valid. The solution x is 
alled the frequen
y response fun
tion. The traditional method inengineering is modal superposition where (16) is proje
ted on well sele
ted eigenve
tors asso
iated with theeigenvalues of

Ku = λMu . (17)This method is usually experien
ed as very e�
ient when the eigenve
tors and eigenvalues are available, sin
e(16) is transformed to a diagonal linear system, but it requires the 
omputation of a signi�
ant amount ofeigenve
tors. E�
ient methods for solving (16) have been developed over the last de
ade, in the 
ontext ofiterative linear system solvers for parameterized problems [5℄ [4℄, and the Padé via Lan
zos method in the
ontext of modelredu
tion [3℄ [1℄ [2℄. In this talk, we dis
uss the use of Ritz ve
tors to pre
onditioning theLan
zos method for solving the parameterized system (16). We apply the method for solving (16) with manyright-hand sides simultaneously. 46



Referen
es[1℄ Z. Bai and R. Freund. A symmetri
 band Lan
zos pro
ess based on 
oupled re
urren
es and some appli-
ations. Numeri
al Analysis Manus
ript 00-8-04, Bell Laboratories, Murray Hill, New Jersey, 2000.[2℄ Z. Bai and R. Freund. A partial Padé-via-Lan
zos method for redu
ed-order modeling. Linear Alg. Appl.,332�334:141�166, 2001.[3℄ P. Feldman and R. W. Freund. E�
ient linear 
ir
uit analysis by Padé approximation via the Lan
zospro
ess. IEEE Trans. Computer-Aided Design, CAD-14:639�649, 1995.[4℄ K. Meerbergen. The solution of parametrized symmetri
 linear systems. SIAM J. Matrix Anal. Appl.,24(4):1038�1059, 2003.[5℄ V. Simon
ini and F. Perotti. On the numeri
al solution of (λ2A + λB + C)x = b and appli
ation tostru
tural dynami
s. SIAM Journal on S
ienti�
 Computing, 23(6):1876�1898, 2002.(with Zhaojun Bai)Meini, Beatri
e, Dipartimento di Matemati
a, Universitá di Pisa, Pisa, Italy[MS6, Tue. 17:20, Room 2℄From algebrai
 Ri

ati equations to unilateral quadrati
 matrix equations: old and newalgorithmsThe problem of redu
ing an algebrai
 Ri

ati equation XCX −AX −XD+B = 0 to a unilateral quadrati
matrix equation (UQME) of the kind PX2 + QX + R = 0 is analyzed. New redu
tions are introdu
edwhi
h enable one to prove some theoreti
al and 
omputational properties. In parti
ular we show that thestru
ture preserving doubling algorithm of B.D.O. Anderson [Internat. J. Control, 1978℄ is in fa
t the 
y
li
redu
tion algorithm of Ho
kney [J. Asso
. Comput. Ma
h., 1965℄ and Buzbee, Golub, Nielson [SIAM J. Nu-mer. Anal., 1970℄, applied to a suitable UQME. A new algorithm obtained by 
omplementing our redu
tionswith the shrink-and-shift te
hnique of Ramaswami is presented. Finally, faster algorithms whi
h require somenon-singularity 
onditions, are designed. The non-singularity restri
tion is relaxed by introdu
ing a suitablesimilarity transformation of the Hamiltonian.(with Bini, Dario and Poloni, Federi
o)Mena, Hermann, Es
uela Polité
ni
a Na
ional, Quito, E
uador[MS6, Tue. 17:45, Room 2℄Exponential Integrators for Solving Large-S
ale Di�erential Ri

ati EquationsThe di�erential Ri

ati equation (DRE) arises in several appli
ations, espe
ially in 
ontrol theory. Partialdi�erential equations (PDEs) 
onstraint optimization problems often lead to formulations as abstra
t Cau
hyproblems. Imposing a quadrati
 
ost fun
tional, the resulting optimal 
ontrol is solved by a feedba
k 
ontrolwhere the feedba
k operator is given in terms of an operator-valued DRE. Hen
e, in order to apply su
h afeedba
k 
ontrol strategy to PDE 
ontrol, we need to solve the large-s
ale DREs resulting from a spatial semi-dis
retization. There is a variety of methods to solve DREs. One 
ommon approa
h is based on a linearizationthat transforms the DRE into a linear Hamiltonian system of �rst-order matrix di�erential equations. Theanalyti
 solution of this system is given in terms of the exponential of a 2nx2n Hamiltonian matrix. In thistalk, we investigate the use of symple
ti
 Krylov subspa
e methods to approximate the a
tion of this operatorand thereby solve the DRE. Numeri
al examples illustrating the performan
e of the method will be shown.(with Benner, Peter) 47



Merlet, Glenn, CNRS/LIAFA, Paris, Fran
e[MS7, Tue. 17:45, Room 3℄Semi-group of matri
es a
ting on the max-plus proje
tive spa
eWe investigate the a
tion of a semi-group S of matri
es on the max-plus proje
tive spa
e. If all matri
es in
S are strongly regular (that is, their image has maximal dimension), and the semi-group is primitive (that isone of its elements has only �nite entries), then there is a point in the proje
tive spa
e, whi
h is �xed by everymatrix in the semi-group. Moreover, S a
ts on ∩M∈SIm(M), like a �nite group of a�ne isometries. If thesemi-group 
ontains an element with proje
tively bounded image, then it also 
ontains some linear proje
tors.Then, for any proje
tor P with minimal tropi
al rank, there is a point x whose orbit is mapped on x by
P . Moreover, {PM : M ∈ S} a
ts on ∩M∈SIm(PM), like a �nite group of isometries for the supremumnorm. We dedu
e from this result some limit theorems for max-plus produ
ts of random matri
es, whi
h wereonly known under the so-
alled memory-loss property. These results are useful for performan
e evaluation ofmax-plus linear dis
rete event systems.Mikkelson, Rana, Iowa State University, Ames, IA, United States of Ameri
a[CT, Thu. 17:20, Room 3℄ Minimum Rank of Graphs with LoopsThe minimum rank problem has been studied primarily for undire
ted simple graphs. We extend 
ut vertexredu
tion for �nding the minimum rank of an undire
ted simple graph, whi
h is known to be valid over any�eld, to undire
ted graphs with loops, where it is valid over any �eld that is not Z2. We then obtain the resultthat minimum rank of a tree with loops is �eld independent ex
ept for Z2.Milligan, Thomas, University of Central Oklahoma, Edmond, OK, USA[CT, Fri. 15:55, Room 4℄ On Eu
lidean Squared Distan
e Matri
esGiven n points in Eu
lidean spa
e, x1, . . . , xn, a Eu
lidean Squared Distan
e (ESD) matrix is a matrix whoseentries are of the form (||xi − xj ||2). The study of distan
e matri
es is useful in 
omputational 
hemistry andstru
tural mole
ular biology. We show some results arising from di�erent 
hara
terizations, in
luding fa
ialstru
ture and linear preservers.(with Chi-Kwong Li and Mi
hael Trossett)Mit
hell, Lon, Virginia Commonwealth University, Ri
hmond, United States[CT, Thu. 18:10, Room 3℄Orthogonal Removal of Verti
es and Minimum Semide�nite RankA ve
tor representation of a graph is an assignment of a ve
tor in C

n to ea
h vertex so that nonadja
ent verti
esare represented by orthogonal ve
tors and verti
es adja
ent by a single edge are represented by nonorthogonalve
tors. The least n for whi
h a ve
tor representation 
an be found is the minimum semide�nite rank (msr)of a graph. While the msr of an indu
ed subgraph provides a lower bound for the msr of a graph, a minimalve
tor representation of a graph need not in
lude a minimal ve
tor representation of a parti
ular subgraph.Orthogonally removing a vertex represented by a ve
tor ~v by orthogonally proje
ting ea
h ve
tor of a ve
torrepresentation on the orthogonal 
omplement of the span of ~v results in a ve
tor representation of a relatedgraph with order de
reased by one. We will dis
uss some of the possibilities and limitations of getting minimalve
tor representations from orthogonal removal.(with Sivaram Narayan) 48



Moro, Julio, Universidad Carlos III de Madrid, Leganés, Spain[MS2, Fri. 12:15, Room 1℄Stru
tured Holder 
ondition numbers for eigenvalues under fully nongeneri
 perturbationsLet λ be an eigenvalue of a matrix or operator A. The 
ondition number κ(A, λ) measures the sensitivity of λwith respe
t to arbitrary perturbations in A. If A belongs to some relevant 
lass, say S, of stru
tured operators,one 
an de�ne the stru
tured 
ondition number κ(A, λ; S), whi
h measures the sensitivity of λ to perturbationswithin the set S. Whenever the stru
tured 
ondition number is mu
h smaller than the unstru
tured one, thepossibility opens for a stru
ture-preserving spe
tral algorithm to be more a

urate than a 
onventional one.For multiple, possibly defe
tive, eigenvalues the 
ondition number is usually de�ned as a pair of nonnegativenumbers, with the �rst 
omponent re�e
ting the worst-
ase asymptoti
 order whi
h is to be expe
ted fromthe perturbations in the eigenvalue. In this talk we adress the 
ase when this asymptoti
 order di�ers forstru
tured and for unstru
tured perturbations: if we denote κ(A, λ) = (n, α) and κ(A, λ; S) = (nS, αS), we
onsider the 
ase when n 6= nS, i.e., when stru
tured perturbations indu
e a qualitatively di�erent perturbationbehavior than unstru
tured ones. If this happens, we say that the 
lass S of perturbations is fully nongeneri
for λ. On one hand, we 
hara
terize full nongeneri
ity in terms of the eigenve
tor matri
es 
orresponding to λ,and it is shown that, for linear stru
tures, this is related to the so-
alled skew-stru
ture asso
iated with S. Onthe other hand, we make use of Newton polygon te
hniques to obtain expli
it formulas for stru
tured 
onditionnumbers in the fully nongeneri
 
ase: both the asymptoti
 order and the largest possible leading 
oe�
ientare identi�ed in the asymptoti
 expansion of perturbed eigenvalues for fully nongeneri
 perturbations.(with María J. Peláez)Morris, DeAnne, Washington State University, Pullman, USA[MS8, Tue. 11:00, Room 2℄Jordan forms 
orresponding to nonnegative and eventually nonnegative matri
esWe give ne
essary and su�
ient 
onditions for a set of Jordan blo
ks to 
orrespond to the peripheral spe
trumof a nonnegative matrix. For ea
h eigenvalue, λ, the λ-level 
hara
teristi
 (with respe
t to the spe
tralradius) is de�ned. The ne
essary and su�
ient 
onditions in
lude a requirement that the λ-level 
hara
teristi
is majorized by the λ-height 
hara
teristi
. An algorithm whi
h determines whether or not a multiset ofJordan blo
ks 
orresponds to the peripheral spe
trum of a nonnegative matrix will be dis
ussed. We alsoo�er ne
essary and su�
ient 
onditions for a multiset of Jordan blo
ks to 
orrespond to the spe
trum of aneventually nonnegative matrix.(with M
Donald, Judith)Moura, Ana, Instituto Superior Té
ni
o, UTL, Lisbon, Portugal[MS4, Wed. 10:35, Room 2℄Skills, Con
epts and Models in a Linear Algebra CourseWe present an approa
h to the organization of a Linear Algebra Course for an engineering degree based on thebalan
e between three pillars: Con
epts, Models and Skills. Algorithmi
 skills is what the students are morefamiliar with. Con
epts is what we mathemati
ians are used to work in our fundamental resear
h. Models iswhat drives 
on
epts and needs algorithms to solve, so 
an be regarded both as a motivator, and as the mainobje
tive we want the future engineer to learn in the end. We want them to be able to look at a problem,
reate a mathemati
al model for it, 
on
eptualize and analyze the model, and �nally to �nd and interpret thepossible solutions.Instituto Superior Té
ni
o (IST) is the main Engineering s
hool in Portugal. It has around 10000 under-graduate students and 2000 graduate students, in around 21 Majors in Engineering and related topi
s. The49



Linear Algebra 
ourse is a �rst semester, �rst year undergraduate 
ourse for all students ex
ept Ar
hite
ture.Students 
ame with a ba
kground on one variable 
al
ulus and basi
 geometry. In high s
hool in Portugal,mathemati
s training emphasis is on algorithmi
 skills, with no stress on the di�eren
e between postulates anddedu
ted results in Mathemati
s. The students are given �fa
ts" and learn to use them to 
al
ulate things.Even this is not well done. With an ex
essive relian
e on 
al
ulators, students a
tually forget simple algebrarules, like distributive property and fra
tion simpli�
ation.The Linear Algebra traditional approa
h in IST has until today been fo
used on tea
hing 
on
epts, axiomsand propositions, with their proofs. On the other hand, students are assessed mainly by exer
ise resolutionswith algorithms (e.g. �nding eigenvalues and ei-genve
tors, 
al
ulating determinants, orthogonalizing basis)with usually only less than 25% of the assessment grade 
oming from 
on
epts. The result is that the studentsdo not learn the 
on
epts, and thus 
an only apply the algorithms if they have seen a similar problem solvedbefore, and so know the �re
ipe".As pointed out by S
hoenfeld (1998), if before the seventies and eighties the main fo
us was on theknowledge base - fa
ts, pro
edures and 
on
eptual understanding, now in order to be su

essful, a mathemati
sprogram must in
lude problem solving strategies, meta
ognition, beliefs, and mathemati
al pra
ti
es. In this
ontext, the authors believe that besides the 
on
epts and algorithms, is very important to introdu
e anotherpillar, namely models . Mathemati
s in its history was always inspired by the real world and its properties.Many results in Mathemati
s were obtained while trying to solve a real world problem, its 
on
epts derivedfrom abstra
ting regularities found in nature. Models serve as a motivator for both the 
on
epts (the student
an see that the 
on
ept is useful be
ause it 
an represent and abstra
t some existing entity/relation in nature)and the algorithms (we are not just 
al
ulating abstra
t quantities, they are possible solutions to a problem).In short, models 
reate the �intelle
tual" need for both the 
on
epts and pro
edures.Linear Algebra is an ideal �eld for this exer
ise, be
ause the invention of the 
omputer in
reased theimportan
e of Linear Algebra as an engineering tool vis a vis Cal
ulus. Unfortunately, at IST as at otherleading Engineering s
hools around the world, too mu
h importan
e is still given to Cal
ulus (Strang, 2002).We, for instan
e, introdu
e in our Linear Algebra Course sto
hasti
 matri
es as simple models for di�erentphenomena, like migrations, voter turnouts, weather predi
tion, and Leontief produ
tion models. For thispropose we highly re
ommend students to read the 
orresponding se
tions in books of Linear Algebra withappli
ations by Anton and Rorres (2005) and Lay (2003). The students understand the power of Mathemati
s,be
ause they 
an see that one mathemati
al 
on
ept, for instan
e eigenvalues and eigenve
tors of a givensto
hasti
 matrix 
an represent various phenomena, and that learning to solve the abstra
t problem will allowthem to understand and make predi
tions on all those phenomena. All assessments in
lude at least onephenomenon for the students to model and/or a model for them to analyze, �nd solutions and interpret.Interestingly, the students initial rea
tion tends to be negative. They are used to 
om-partmentalizeknowledge, and are not expe
ting to have to talk about population growth in a Linear Algebra 
lass. Butalong the 
ourse, they get used to the need of applying 
on
epts and pro
edures to given models. They gettraining in analyzing real world problems using Mathemati
s. They evolve in their ways of understanding andthinking (Harel, 2007) of mathemati
al solutions as having more than just algebrai
 meaning, whi
h is one ofthe most important obje
tives a mathemati
s 
ourse should give them.Referen
esAnton, H., and Rorres C. (2005). Elementary Linear Algebra-Appli
ations Version. New York, John Wileyand Sons, In
. (9th Edition).Harel G. (In Press). What is Mathemati
s? A Pedagogi
al Answer to a Philosophi
al Question. In R.B. Gold and R. Simons (Eds.), Current Issues in the Philosophy of Mathemati
s From the Perspe
tive ofMathemati
ians, Mathemati
al Ameri
an Asso
iation.Lay, D. C. (2003). Linear Algebra and its Appli
ation. New York, Addison Wesley (3rd Edition).S
hoenfeld A. H. (1998). Toward a Theory of Tea
hing-in-
ontext. In Issues in Edu
ation, Volume 4, No 1,pp. 1-94.Strang G. (2002). Too Mu
h Cal
ulus. SIAM Linear Algebra A
tivity Group Newsletter (2002).(with Santos, P. A.) 50



Nagy, James, Emory University, Atlanta, USA[Plenary, Wed. 9:10�10:05℄ Krone
ker Produ
ts in Imaging S
ien
esLinear algebra and matrix analysis are very important in the imaging s
ien
es. This should not be surprisingsin
e digital images are typi
ally represented as arrays of pixel values; that is, as matri
es. Due to advan
esin te
hnology, the development of new imaging devi
es, and the desire to obtain images with ever higherresolution, linear algebra resear
h in image pro
essing is very a
tive. In this talk we des
ribe how Krone
ker andHadamard produ
ts arise naturally in many imaging appli
ations, and how their properties 
an be exploitedwhen 
omputing solutions of very di�
ult linear algebra problems.Nagy, James, Emory University, Atlanta, USA[MS3, Thu. 17:45, Room 2℄Lan
zos Hybrid Regularization for Image Pro
essing Appli
ationsIll-posed problems arise in many image pro
essing appli
ations, in
luding mi
ros
opy, medi
ine and astronomy.Iterative methods are typi
ally re
ommended for these large s
ale problems, but they 
an be di�
ult to usein pra
ti
e. For example, it may be di�
ult to determine an appropriate stopping 
riteria for fast algorithms,su
h as the 
onjugate gradient method; noise 
ontaminates the iterates very qui
kly, so an impre
ise stopping
riteria 
an lead to poor re
onstru
tions. Lan
zos based hybrid methods have been proposed to slow theintrodu
tion of noise in the iterates. In this talk we dis
uss the behavior of Lan
zos based hybrid methodsfor large s
ale problems in image pro
essing. In parti
ular, we dis
uss how to in
orporate regularization and
onstraints, and how to 
hoose regularization parameters during the iteration pro
ess.(with Julianne Chung and Dianne O'Leary)Narayan, Sivaram, Central Mi
higan University, Mount Pleasant, Mi
higan 48859, USA[CT, Fri. 12:15, Room 3℄Linearly Independent Verti
es and Minimum Semide�nite RankA ve
tor representation of a graph is an assignment of a ve
tor in Cn to ea
h vertex so that nonadja
ent verti
esare represented by orthogonal ve
tors and verti
es adja
ent by a single edge are represented by nonorthogonalve
tors. The least n for whi
h a ve
tor representation 
an be found is the minimum semide�nite rank ofa graph. We study the minimum semide�nite rank of a graph using ve
tor representations. For example,rotation of ve
tor representations by a unitary matrix allows us to �nd the minimum semide�nite rank ofthe join of two graphs and 
ertain bipartite graphs. We present a su�
ient 
ondition for when the ve
tors
orresponding to a set of verti
es of a graph must be linearly independent in any ve
tor representation of thatgraph, and 
onje
ture that the resulting graph invariant is equal to minimum semide�nite rank.Neumann, Mi
hael, Department of Mathemati
s, University of Conne
ti
ut, Storrs, USA[MS8, Tue. 11:50, Room 2℄On Optimal Condition Numbers For Markov ChainsLet T = (ti,j) and T̃ = T − E be arbitrary nonnegative, irredu
ible, sto
hasti
 matri
es 
orresponding totwo ergodi
 Markov 
hains on n states. A fun
tion κ(·) is 
alled a 
ondition number for Markov 
hains withrespe
t to the (α, β)�norm pair if ‖π − π̃‖α ≤ κ(T )‖E‖β.Various 
ondition numbers, parti
ularly with respe
t to the (1,∞) and (∞,∞) have been suggested in theliterature by several authors. They were ranked a

ording to their size by Cho and Meyer in a paper from 2001.In this paper we �rst of all show that what we 
all the generalized ergodi
ity 
oe�
ient τp(∗) = supyte=0
‖yt∗‖p

‖y‖1
,51



where e is the n�ve
tor of all 1's, is the smallest of the 
ondition numbers of Markov 
hains with respe
t tothe (p,∞)�norm pair. We use this result to identify the smallest 
ondition number of Markov 
hains amongthe (∞,∞) and (1,∞)�norm pairs. These are, respe
tively, κ3 and κ6 in the Cho�Meyer list of 8 
onditionnumbers.Kirkland has studied κ3(T ). He has shown that κ3(T ) ≥ n−1
2n and he has 
hara
terized the properties oftransition matri
es for whi
h equality holds. We prove again that 2κ3(T ) ≤ κ(6) whi
h appears in the Cho�Meyer paper and we 
hara
terize the transition matri
es T for whi
h κ6(T ) = n−1

n . There is only one su
hmatrix: T = (Jn − I)/(n− 1). where Jn is the n× n matrix of all 1's. This result demands the developmentof the 
y
li
 stru
ture of a doubly sto
hasti
 matrix with a zero diagonal.Resear
h supported by NSA Grant No. 06G�232(with Sze, Nung-Sing)Olesky, Dale, University of Vi
toria, Vi
toria, Canada[MS1, Fri. 15:30, Room 1℄ Group Inverses of Matri
es with Path GraphsA simple formula for the group inverse of a 2×2 blo
k matrix with a bipartite digraph is given in terms of theblo
k matri
es. This formula is used to give a graph-theoreti
 des
ription of the group inverse of an irredu
ibletridiagonal matrix of odd order with zero diagonal (whi
h is singular). Relations between the zero/nonzerostru
tures of the group inverse and the Moore-Penrose inverse of su
h matri
es are given. An extension of thegraph-theoreti
 des
ription of the group inverse to singular matri
es with tree graphs is 
onje
tured.(with M. Catral and P. van den Driess
he)Olshevsky, Vadim, University of Conne
ti
ut, Storrs, USA[CT, Thu. 11:25, Room 4℄Can One Invert a Matrix via Graph Manipulations?In this paper we use �ow graphs to des
ribe the stru
ture for the inverse polynomial Vandermonde matrix (andto design fast O(n2) algorithms that 
ompute it). Although all the results 
an be derived algebrai
ally, here wereveal a 
onne
tion to signal pro
essing and dedu
e new inversion formulas via elementary operations on signal�ow graphs for digital �lter stru
tures. We introdu
e, for the �rst time, several new �lter stru
tures (e.g.,quasiseparable �lters, semiseparable �lters, and well-free �lters) that generalize the 
elebrated Markel-Graystru
ture, widely used in spee
h pro
essing. No knowledge of system theory (or anything beyond matri
es)is required, we will start with an elementary 5-minutes tutorial on �ow graphs, and show how their usedramati
ally simpli�es the derivation of inversion formulas.(with Tom Bella and Pavel Zhlobi
h)Olshevsky, Vadim, University of Conne
ti
ut, Storrs, USA[MS2, Fri. 10:35, Room 1℄Lips
hitz stability of 
anoni
al Jordan bases of H-selfadjoint matri
esWe study Jordan-stru
ture-preserving perturbations of matri
es selfadjoint in the inde�nite inner produ
t.The main result is Lips
hitz stability of the 
orresponding so-
alled similitude matri
es. The result 
an bereformulated as Lips
hitz stability, under small perturbations, of 
anoni
al Jordan bases (i.e., eigenve
torsand generalized eigenve
tors enjoying a 
ertain �ipped orthonormality relation) of matri
es selfadjoint in theinde�nite inner produ
t. The proof relies upon the analysis of small perturbations of invariant subspa
es,where the size of a permutation of an invariant subspa
e is measured using the 
on
epts of a gap and of asemigap.(with Tom Bella and Upendra Prasad) 52



Palma, Alejandro, Instituto de Físi
a (BUAP), Puebla, Méxi
o[CT, Thu. 11:50, Room 4℄Solution of the linear time-dependent potential by using a solvable Lie algebra∗The solution of the S
hödinger equation for the linear time-dependent potential has been re
ently the subje
tmatter of several publi
ations. We show in this work that this is one of the few systems whi
h leads to asolvable Lie algebra. In fa
t, we 
onsider a more general potential where the linear time-dependent potentialis only a parti
ular 
ase. We �nd the solution by using the well known theorem of Wei-Norman.(with M. Villa, and L. Sandoval)Parraguez, Mar
ela, Ponti�
ia Universidad Católi
a de Valparaíso, Valparaíso, Chile[MS4, Mon. 12:00, Room 1℄ Constru
tion of a ve
tor spa
e s
hemaFrom a 
ognitive point of view the ve
tor spa
e 
on
ept is one that 
auses many di�
ulties for studentsof Linear Algebra. Apart from being abstra
t in itself, it has to be 
onne
ted with several other abstra
t
on
epts in the mind of a student in order to 
laim that understanding takes pla
e. In this resear
h proje
tour aim is to explain the 
onstru
tion of the ve
tor spa
e 
on
ept from the viewpoint of APOS (A
tion �Pro
ess � Obje
t � S
hema) theory. We are also interested in studying the formation and evolution ofthe ve
tor spa
e s
hema and how other 
on
epts su
h as linear independen
e and basis are in
orporated intothe students' mathemati
al world in 
onne
tion with this s
hema. The methodologi
al framework of APOStheory requires that the 
on
ept in question be analyzed theoreti
ally resulting in a viable map (
alled ageneti
 de
omposition) of student learning in terms of mental 
onstru
tions. In our talk we will present apossible geneti
 de
omposition for the 
onstru
tion of the ve
tor spa
e 
on
ept and provide empiri
al eviden
efor spe
i�
 mental 
onstru
tions that students make when they are learning this 
on
ept. This eviden
e wasgathered through questionnaires and interviews (designed in line with our geneti
 de
omposition) applied toundergraduate students who were taking a Linear Algebra 
ourse. These instruments also help in identifyingstudent di�
ulties with the ve
tor spa
e 
on
ept and some related 
on
epts su
h as binary operations, axiomsand �elds.(with Oktaç, Asuman)Patri
io, Pedro, Departamento de Matemáti
a, Universidade do Minho, Braga, Portugal[CT, Fri. 11:50, Room 4℄ Some additive results on Drazin InversesOur aim is to investigate the existen
e of the Drazin inverse (p + q)d of the sum p + q, where p and q areeither ring elements or matri
es, and ad denotes de Drazin inverse of a. We re
all that the Drazin inverse adof a is the unique solution, if it exists, to akxa = ak, xax = x, ax = xa, for some integer k ≥ 0. In this talk,we will give su�
ient 
onditions in order to p + q be Drazin invertible, generalizing re
ent results, and give
onverse results assuming the ring is Dedekind-�nite.(with R. E. Hartwig)
53



Peña, Juan Manuel, University of Zaragoza, Zaragoza, Spain[Plenary, Wed. 8:10�9:05℄From Total Positivity to Positivity: related 
lasses of matri
esMatri
es with all their minors nonnegative (respe
tively, positive) are usually 
alled totally nonnegative(respe
tively, totally positive). These matri
es present ni
e stability properties as well as interesting spe
tral,fa
torization and variation diminishing properties. They play an important role in many appli
ations to other�elds su
h as Approximation Theory, Me
hani
hs, E
onomy, Optimization, Combinatori
s or Computer AidedGeometri
 Design. We revisit some of the properties and appli
ations of these matri
es and show some re
entadvan
es. Moreover, we show that some results and te
hniques 
oming from Total Positivity theory have beenextended to other 
lasses of matri
es whi
h are also 
losely related to positivity. Among these other 
lasesof matri
es we 
onsider sign regular matri
es (whi
h generalize totally nonnegative matri
es), some 
lasses ofP-matri
es (matri
es whose prin
ipal minors are positive), in
luding M-matri
es, and 
onditionally positivede�nite (and 
onditionally negative de�nite) matri
es.Peña, Marta, Universitat Polite
ni
a de Catalunya, Bar
elona, Spain[CT, Tue. 11:00, Room 4℄Perturbations preserving 
onditioned invariant subspa
esInvariant subspa
es play a key role both in square matri
es and linear systems, where they are often 
alled�
onditioned" invariant subspa
es. In the 
ontext of versal deformations, invariant subspa
es arise in a naturalway. For instan
e, in the Carlson problem (that is, the possible Segre 
hara
teristi
 of a blo
k-triangularnilpotent matrix when diagonal blo
ks are pres
ribed), one asks for perturbations of the given matrix preservinga pre�xed invariant subspa
e. The �interesting 
lass" of the so-
alled marked subspa
es, namely, the invariantsubspa
es having a Jordan basis whi
h 
an be extended to a Jordan basis of the whole spa
e is also 
onsideredin this work. For instan
e, it is known that the �simplest" solutions of the Carlson problem are marked, andany other appears in a neighborhood of the marked ones. This notion 
an be extended to pairs of matri
es andused for the analogue to the Carlson problem: again the marked Solutions 
over all the possibilities and arethe simplest realizations. Here we ta
kle the perturbation of a linear system preserving a given 
onditionedinvariant subspa
e. We fo
us our attention on the marked 
ase whi
h, as above, has interesting properties; forinstan
e the �minimal" observable perturbations of a non-observable pair are marked. We obtain the equationsof a miniversal deformation of a pair of matri
es preserving a given 
onditioned invariant subspa
e and solvethem expli
itly, obtaining �minimal" solutions (that is, without repeated parameters). Some appli
ations arederived: 
omputation of the dimension of the orbits, 
hara
terization of stru
turally stable obje
ts, study ofbifur
ations diagrams...(with A. Compta and J. Ferrer)Perdigão, Ce
ília, Fa
uldade de Ciên
ias e Te
nologia-UNL, Lisboa, Portugal[CT, Thu. 17:45, Room 3℄ On the equivalen
e 
lass graphFor a given simple, 
onne
ted and undire
ted graph G = (V (G), E(G)) we de�ne an equivalen
e relation Ron V (G) su
h that
∀x,y∈V (G) xRy ⇔ N(x) = N(y),where, for all x in V (G), N(x) is the set of all neighbors of x. The equivalen
e 
lass graph of G, or R-graph of

G, is the graph G = (V (G), E(G)) where V (G) = {X1, . . . , Xp} is the set of equivalen
e 
lasses of R in V (G)and {Xi, Xj} ∈ E(G) if, and only if, there exists x ∈ Xi and y ∈ Xj su
h that {x, y} is an edge in G. Inour last work we have 
omputed the minimum rank of G using the R- graph of G. Although in various 
ases54



this 
omputation was simpli�ed, there exist graphs whose R-graph is equal to the graph itself and for whosewe do not have any simpli�
ation by this 
onstru
tion. Our aim is study the properties of the equivalen
e
lass graph and, more parti
ulary, 
hara
terize simple 
onne
ted and undire
ted graphs whi
h are equal to itsequivalen
e 
lass graph.(with Rosário Fernandes)Plavka, Jan, Te
hni
al University, Ko
i
e, Slovakia[MS7, Wed. 11:50, Room 3℄On the robustness of matri
es in max-min algebraLet (B,≤) be a nonempty, bounded, linearly order set and a⊕ b = max(a, b), a⊗ b = min(a, b) for a, b ∈ B.A ve
tor x is said to be an eigenve
tor of a square matrix A if A ⊗ x = λ ⊗ x. A given matrix A is 
alled(strongly) robust if for every x the ve
tor Ak ⊗ x is an (greatest) eigenve
tor of A for some natural number k.We present a 
hara
terization of robust and strongly robust matri
es. As a 
onsequen
e, an e�
ient algorithmfor 
he
king of it is introdu
ed.Referen
es[1℄ P. Butkovi£ and R. A. Cuninghame-Green, On matrix powers in max-algebra, Lin. Algebra and its Appl.421 (2007) 370-381.[2℄ K. Ce
hlárová, Eigenve
tors in bottlene
k algebra, Lin. Algebra Appl. 175 (1992), 63- 73.[3℄ J. Plavka, On the robustness of matri
es in max-min algebra (submitted to LAA).Plestenjak, Bor, University of Ljubljana, Ljubljana, Slovenia[MS2, Thu. 18:10, Room 1℄Numeri
al methods for two-parameter eigenvalue problemsWe 
onsider the two-parameter eigenvalue problem [1℄
A1x1 = λB1x1 + µC1x1, (18)
A2x2 = λB2x2 + µC2x2,where Ai, Bi, and Ci are given ni × ni matri
es over C, λ, µ ∈ C, and xi ∈ Cni for i = 1, 2. A pair (λ, µ) is aneigenvalue if it satis�es (18) for nonzero ve
tors x1, x2. The tensor produ
t x1 ⊗ x2 is then the 
orrespondingeigenve
tor. On the tensor produ
t spa
e S := Cn1 ⊗Cn2 of the dimension N := n1n2 we 
an de�ne operatordeterminants
∆0 = B1 ⊗ C2 − C1 ⊗B2,
∆1 = A1 ⊗ C2 − C1 ⊗A2,
∆2 = B1 ⊗A2 −A1 ⊗B2.The two-parameter problem (18) is nonsingular if its operator determinant ∆0 is invertible. In this 
ase

∆−1
0 ∆1 and ∆−1

0 ∆2 
ommute and problem (18) is equivalent to the asso
iated problem
∆1z = λ∆0z, (19)
∆2z = µ∆0z55



for de
omposable tensors z ∈ S, z = x1⊗x2. Some numeri
al methods and a basi
 theory of the two-parametereigenvalue problems will be presented. A possible approa
h is to solve the asso
iated 
ouple of generalizedeigenproblems (19), but this is only feasible for problems of low dimension be
ause the size of the matri
es of(19) is N ×N . For larger problems, if we are interested in a part of the eigenvalues 
lose to a given target, theJa
obi�Davidson method [3, 4, 5℄ gives very good results. Several appli
ations lead to singular two-parametereigenvalue problems where ∆0 is singular. Two su
h examples are model updating [2℄ and the quadrati
two-parameter eigenvalue problem
(S00 + λS10 + µS01 + λ2S20 + λµS11 + µ2S02)x = 0 (20)
(T00 + λT10 + µT01 + λ2T20 + λµT11 + µ2T02)y = 0.We 
an linearize (20) as a singular two-parameter eigenvalue problem, a possible linearization is






S00 S10 S01

0 −I 0
0 0 −I


 + λ




0 S20
1
2S11

I 0 0
0 0 0


 + µ




0 1
2S11 S02

0 0 0
I 0 0




 x̃ = 0






T00 T10 T01

0 −I 0
0 0 −I


 + λ




0 T20
1
2T11

I 0 0
0 0 0


 + µ




0 1
2T11 T02

0 0 0
I 0 0




 ỹ = 0,where x̃ =



x
λx
µx


 and ỹ =



y
λy
µy


. Some theoreti
al results and numeri
al methods for singular two-parameter eigenvalue problems will be presented.Referen
es[1℄ F. V. Atkinson, Multiparameter eigenvalue problems, A
ademi
 Press, New York, 1972.[2℄ N. Cottin, Dynami
 model updating � a multiparameter eigenvalue problem, Me
h. Syst. Signal Pr.,15 (2001), pp. 649�665.[3℄ M. E. Ho
hstenba
h and B. Plestenjak, A Ja
obi�Davidson type method for a right de�nite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392�410.[4℄ M. E. Ho
hstenba
h, T. Ko²ir, and B. Plestenjak, A Ja
obi�Davidson type method for thenonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477�497.[5℄ M. E. Ho
hstenba
h and B. Plestenjak, Harmoni
 Rayleigh�Ritz extra
tion for the multiparametereigenvalue problem, to appear in ETNA.Pon
e, Daniela, University of Hrade
 Králové, Hrade
 Králové, Cze
h Republi
[MS7, Mon. 12:25, Room 2℄NP-hard problems in extremal algebras ta
kled by parti
le swarm optimizationThe aim of the 
ontribution is to present an appli
ation of a non-standard method 
alled parti
le swarmoptimization (PSO), in the area of extremal algebras. Many of the problems studied in max-plus or max-minalgebra 
annot be solved in polynomial time and have been shown to be NP-hard. From the pra
ti
al pointof view, �nding an approximate or suboptimal solution 
an be a 
onsiderable a
hievement in 
omparisonwith the situation when no solution is available. New ways of 
omputation are being developed for atta
king56



these dire
tly intra
table problems. Permuted eigenve
tor problem (PEV) has been re
ently investigated inmax-plus algebra: Given a square matrix A and a ve
tor x of the same dimension, is there a permutation
π su
h that the permuted ve
tor xπ is an eigenve
tor of A? It has been proved that PEV and several otherrelated problems are NP-
omplete, see [2℄. On the other side, analogous problems are polynomially solvablein max-min algebra, see [4℄, [5℄. In the 
ontribution, PEV in both versions, max-plus and max-min, has beensolved by the parti
le swarm optimization method, the results have been analysed and 
onvergen
e 
onditionsdes
ribed. PEV 
an be approa
hed as an optimization problem. When square matrix A and ve
tor x ofdimension n are given, then ve
tor variable y is 
onsidered, with the 
onstraint that y is a permutation of
x. An obje
tive fun
tion z = ‖A ⊗ y − y‖ should be set to minimum. The answer in the given instan
e ofPEV is `yes' exa
tly when the minimal value of z is zero. The operation ⊗ in the de�nition of the obje
tivefun
tion z denotes the matrix multipli
ation in the 
orresponding extremal algebra (max-plus, or max-min).Parti
le swarm optimization (PSO) is a global sto
hasti
 optimization te
hnique developed by Kennedy andEberhart [6℄. PSO is population-based optimization algorithm imitating so
ial behavior. The optimizationalgorithm starts by a 
reation of a population (swarm) of randomly 
onstru
ted 
andidate solutions (parti
les)resulting in initial lo
ation of parti
les in the solution spa
e. Position of the swarm in the solution spa
e isthen repeatedly adjusted based on 
onsideration of previous best positions of ea
h individual parti
le in thesolution spa
e as well as best positions attained by neighbouring parti
les (various neighbourhood topologies
an be de�ned). The basi
 variant of PSO algorithm was proved to be not a lo
al optimizer. However, su
hvariants of PSO algorithm exist whi
h were proved to be global optimization algorithms [1℄. Examples of su
-
essful appli
ations of PSO are related to design problems [3℄, s
heduling and planning problems [9℄ or appliedmathemati
s problems [7℄, [8℄, [10℄. In ta
kling PEV as optimization problem we deal with a dis
rete variant ofPSO. Ea
h parti
le y is a random permutation of x and the swarm is a set of permutations. The solution spa
eis 
omposed of all permutations of x. Obje
tive fun
tion of a parti
le is z as de�ned above, i.e. the norm of thedi�eren
e A⊗y−y. The 
omputational ability of PSO to �nd a solution of PEV has been experimentally tested.Referen
es[1℄ F. van den Bergh, An Analysis of Parti
le Swarm Optimizers, PhD thesis, Department of ComputerS
ien
e, University of Pretoria, Pretoria, South Afri
a (2002).[2℄ P. Butkovi£: Permuted max-algebrai
 (tropi
al) eigenve
tor problem is NP-
omplete, Linear Algebraand its Appli
ations 428 (2008), 1874-1882.[3℄ C.A. Coello Coello, E.H.N. Luna, A.H.N. Aguirre, Use of Parti
le Swarm Optimization to DesignCombinational Logi
 Cir
uits, Le
ture Notes in Computer S
ien
e, Springer-Verlag, 2606 (2003), 398-409.[4℄ M. Gavale
, J. Plavka, Simple image set of linear mappings in a max-min algebra, Dis
rete AppliedMathemati
s 155 (2007), 611-622.[5℄ M. Gavale
, J. Plavka, Permuted max-min eigenve
tor problem (to appear in Pro
. of the ILASConferen
e 2008, Can
ún).[6℄ J. Kennedy, R.C. Eberhart, Parti
le Swarm Optimization, Pro
. of the IEEE International Conferen
eon Neural Networks, Pis
ataway, NJ, USA (1995), 1942-1948.[7℄ E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Parti
le Swarm Optimization for Minimax Problems,Pro
. of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1576-1581.[8℄ E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Parti
le Swarm Optimization for Integer Programming,Pro
. of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1582-1587.[9℄ A. Salman, I. Ahmad, S. Al-Madani, Parti
le Swarm Optimization for Task Assignment Problem,Mi
ropro
essors and Mi
rosystems, 26(8) (2002), 363-371.[10℄ Y. Shi, R.A. Krohlin, Co-evolutionary Parti
le Swarm Optimization to Solve min-max Problems, Pro
.of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1682-1687.(with Gavale
, Martin)
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Poole, George, East Tennessee State University, Johnson City, USA[CT, Mon. 17:20, Room 2℄ Whatever Happened to Rook's Pivoting?In 1991, Poole and Neal (LAA 149:249-272) presented a geometri
 analysis of both phases of GaussianElimination (GE) in order to better understand how partial pivoting, total pivoting, s
aling, and 
onditionnumber in�uen
e the 
omputed solution of a system of linear equations in a �nite-pre
ision (F-P)environment.What emerged from this geometri
 analysis was a new pivoting strategy, Rook's Pivoting, that addressed allof the issues normally asso
iated with GE in a F-P environment: pivoting, s
aling, and 
ondition number.The work was presented through a series of papers. Here we review the impli
ation of these papers in bothLA edu
ation, and LA appli
ation. The talk should be both illuminating and entertaining.Possani, Edgar, ITAM- Instituto Te
nológi
o Autónomo de Méxi
o, Méxi
o, Méxi
o[MS4, Wed. 11:25, Room 2℄Use of models in the tea
hing of linear algebraIn this talk we will present an approa
h to tea
hing linear algebra using models. In parti
ular, we areinterested in analyzing the models and modeling (Lesh 2003) approa
h under an APOS perspe
tive. We willpresent a short illustration of the analysis on a problem related to tra�
 �ow that eli
its the use of a system oflinear equations and di�erent parameterizations of this system to answer questions on tra�
 
ontrol. Carlsonet. al. (1997) have done some resear
h regarding the main obsta
les fa
ed by students when approa
hingnotions and tools of linear algebra. Their work suggests the use of problems that go beyond simple exer
ises,espe
ially those that 
ome from other subje
t areas, whi
h 
an enri
h and motivate a signi�
ant learningexperien
e. Under Lesh's models and modeling approa
h a 
andidate problem should follow six prin
iples inorder to qualify for su
h analysis as a model-eli
iting a
tivity. We have employed these 
riteria when sele
tingand analyzing problems that 
ould later be used in the tea
hing of linear algebra. We 
omplement this analysisby following an APOS approa
h. The A
tion-Pro
ess-Obje
t-S
hema (APOS) theory was built on Piaget'swork and 
onstru
tivist ideas (Dubinsky, 1992, 1994). It intends to model the way students learn advan
edmathemati
al topi
s by analyzing the mathemati
al 
on
epts involved in a 
ertain problem. Through thegeneti
 de
omposition of 
on
epts it is possible to de�ne spe
i�
 a
tions, pro
esses and obje
ts that students
on
eptualize as they learn. This des
ription enables resear
hers to have a 
learer idea of the learning pro
essesand to design appropriate questions for students to ta
kle. Our aim is to analyze modeling problems throughthe 
areful design of a
tivities that promote signi�
ant development of mathemati
al reasoning in a meaningfulsituation or realisti
 setting. We will present an analysis of the problem with the help of APOS theory andthe design of a
tivities that 
an help students develop their learning. We propose trying out these a
tivitiestogether with the problem in order to analyze its e�e
tiveness in des
ribing the learning pro
ess. The tra�
�ow problem asks of students several spe
i�
 questions on tra�
 
ontrol on a grid of streets in a busy �nan
ialdistri
t of a 
ity. It has already been used in the 
lassroom by one of the resear
hers who is also a linearalgebra tea
her. It is our experien
e that students en
ounter great di�
ulties in identifying the variablesand the problem 
onditions that might enable them in setting the linear equations ne
essary to des
ribe asystem of simultaneous equations to model the problem. Our 
hosen problem allows this to be
ome evident,and to identify where the di�
ulties lie. In the pro
ess of exploring di�erent parameterizations, students �ndgraphi
al representations for the region of possible parameter values (plausible values for the tra�
 �ow).These di�erent parameterizations help them identify an adequate one with whi
h to answer spe
i�
 questionson tra�
 
ontrol. The realisti
 setting of the problem motivates this analysis by the students. This will workwill be presented in a full version as a paper at the 
onferen
e.(with Pre
iado, G. and Lozano, D.)
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Prokip, Volodymyr, Institute of Appl. Problem for Me
h. and Math. NAS of Ukr, L'viv, Ukraine[CT, Thu. 16:55, Room 5℄On the problem of diagonalizability of matri
es over a prin
ipal ideal domainLet R � be a prin
ipal ideal domain with the unit element e 6= 0 and U(R) the set of divisors of unit element
e. Further, let Rn � the ring of (n× n)-matri
es over R; Ik � the identity k × k matrix and O the zero n× nmatrix. In this report we present 
onditions of diagonalizability of a matrix A ∈ Rn, i.e. when for A thereexists a matrix T ∈ GL(n,R) su
h that TAT−1 � a diagonal matrix. Theorem. Let A ∈ Rn and

det(Ix− A) = (x− α1)
k1(x − α2)

k2 · · · (x− αr)
kr ,where αi ∈ R, and αi − αj ∈ U(R) for all i 6= j. If m(x) = (x − α1)(x − α2) · · · (x − αr) � the minimalpolynomial of the matrix A, i.e. m(A) = O, then for the matrix A there exists a matrix T ∈ GL(n,R) su
hthat

TAT−1 = diag (α1Ik1
, α2Ik2

, . . . , αrIkr
) .Protasov, Vladimir, Mos
ow State University, Mos
ow, Russia[CT, Wed. 11:50, Room 4℄

p-radii of linear operators and equations of self-similarity
p-radii of linear operators extend the notion of the joint spe
tral radius, they are known sin
e 1995. Weprove that for any p ∈ [1,+∞] a �nite irredu
ible family of linear operators possesses an extremal norm
orresponding to its p-radius. As a 
orollary we derive a 
riterion for the Lp-
ontra
tibility property of linearoperators and estimate the asymptoti
 growth of orbits for any point. These results are applied in analysisof fun
tional di�eren
e equations with linear 
ontra
tions of the argument (self-similarity equations). Spa
ial
ases of su
h equations are well-known: fra
tal 
urves (de Rhum, Ko
h 
urves, et
.), re�nement equations andso on. We obtain a sharp 
riterion for the existen
e and uniqueness of solutions of the self-similarity equationsin various fun
tional spa
es, 
ompute the exponents of regularity and estimate moduli of 
ontinuity. This, inparti
ular, gives a geometri
 interpretation of the p-radius in terms of spe
tral radii of 
ertain operators inthe spa
e Lp[0, 1].Pruneda, Rosa E., University of Castilla-La Man
ha, Ciudad Real, Spain[CT, Tue. 11:00, Room 3℄Complete Orthogonal De
omposition Compared with Dire
t Proje
tion MethodsSeveral variants of proje
tion methods have been applied to solve linear systems of equations and matrix
omputations. These methods are dire
t solvers and 
onsist of an iterative pro
ess that proje
ts the orthogonalsubspa
e of ea
h row of a matrix in the orthogonal subspa
e of the previous ones. The pivoting pro
ess is basedon the dot produ
ts of the rows of the matrix and a base of the Eu
lidean spa
e, whi
h is transformed at ea
hiteration 
onsidering orthogonal relationships. This paper studies the orthogonal de
omposition method thatgives a 
omplete de
omposition of the Eu
lidean spa
e. The method is 
ompared with the dire
t proje
tionmethod, whi
h is based on the same pivoting strategy, but gives an impli
it fa
torization of the matrix. Theexe
ution and the numeri
al 
ost of dete
ting linear dependen
ies, solving multiple linear systems and updatingone-rank modi�
ation problems are dis
ussed. An appli
ation to linear regression problems illustrates how todete
t 
ollinear relations and to obtain the 
oe�
ients of su
h dependen
ies with both methods.(with Beatriz La
ruz)
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Pryporova, Olga, Iowa State University, Ames, IA, USA[MS1, Wed. 11:50, Room 1℄ Potential Diagonal and D-
onvergen
eIt is well known that a matrix A is 
onvergent (i.e. its spe
tral radius is less than 1) if and only if theStein linear matrix inequality X − A∗XA ≻ 0 has a positive de�nite solution X = P . A stronger type of
onvergen
e, useful in many appli
ations, is diagonal 
onvergen
e, where a positive diagonal solution P exists.Diagonal 
onvergen
e guarantees, in parti
ular, that a matrix will remain 
onvergent under multipli
ativediagonal perturbations D with |D| ≤ I. A matrix A su
h that DA is 
onvergent for all diagonal matri
es
D, where |D| ≤ I, is 
alled D-
onvergent. In my talk I will present some results on the relations betweendiagonal, D-
onvergen
e, and introdu
e 
onne
tions to qualitative 
onvergen
e.Renaut, Rosemary A., Department of Mathemati
s and Statisti
s, Tempe, USA[MS3, Thu. 18:35, Room 2℄A Newton Iteration for estimating the regularizing parameter for least squaresRe
ently, Mead showed that a statisti
al result on the χ2-distribution of the Tikhonov 
ost fun
tional forleast squares problems 
an be used for estimating an optimal regularizing parameter. Here we explain theba
kground and development of a Newton iteration from whi
h the regularizing parameter 
an be e�
ientlyand e�e
tively found. We 
ontrast the Newton iteration with and without solution using the GeneralizedSingular Value De
omposition, hen
e demonstrating that one 
an e�
iently �nd solutions without the GSVD.At ea
h Newton step a solution of the regularized problem needs to be found for the 
urrent value of theregularization parameter. We also investigate the sensitivity of the solution to the a

ura
y of 
al
ulatingthese intermediate steps of the Newton iteration, hen
e demonstrating that the overall ideal regularizationparameter 
an be obtained without signi�
ant overhead as 
ompared to one solution of the given problem.(with Jodi Mead, Boise State University)Ro
a, Ali
ia, Dpto. de Matemáti
a Apli
ada, Universidad Polité
ni
a, Valen
ia, Spain[CT, Tue. 11:25, Room 4℄ Pen
ils with Pres
ribed Constant Subpen
ilsWe present a result within the s
ope of the matrix pen
il 
ompletion problem. We 
hara
terize the existen
eof an arbitrary pen
il with a pres
ribed 
onstant subpen
il, in terms of very simpli�ed 
onditions and foralgebrai
ally 
losed �elds.(with F. C. Silva)Rodríguez, Juan Alberto, Universitat Rovira i Virgili, Tarragona, España[CT, Fri. 11:50, Room 3℄ The Lapla
ian Spe
trum of HypergraphsIn order to dedu
e properties of graphs from results and methods of algebra, �rstly we need to translateproperties of graphs into algebrai
 properties. In this sense, a natural way is to 
onsider algebrai
 stru
turesor algebrai
 obje
ts as, for instan
e, groups or matri
es. In parti
ular, the use of matri
es allows us touse methods of linear algebra to derive properties of graphs. There are various matri
es that are naturallyasso
iated with graphs, su
h as the adja
en
y matrix, the Lapla
ian matrix, and the in
iden
e matrix. One ofthe main aims of algebrai
 graph theory is to determine how, or whether, properties of graphs are re�e
ted inthe algebrai
 properties of su
h matri
es. In this paper we 
olle
t some resent results on the Lapla
ian spe
trum60



of hypergraphs. We fo
uss our attention on metri
 parameters, in
luding e

entri
ity, ex
ess, diameter andWiener index. Throughout this paper we parti
ularize the results to the 
ase of walk-regular hypergraphs.(with Aida Kamisali
)Rosenthal, Peter, University of Toronto, Canada[Plenary, Fri. 8:10�9:05℄ Invariant subspa
es of semigroups of matri
esBy a �semigroup of matri
es" we simply mean a 
olle
tion of square 
omplex matri
es that is 
losed undermultipli
ation. This will be a 
ompletely self-
ontained survey of some results related to invariant subspa
esof su
h semigroups. It will begin with a maximally-simple proof of Burnside's Theorem (obtained in jointwork with Halperin and Lomonosov) that has the immediate 
orollary that a semigroup is irredu
ible (i.e., hasonly the trivial invariant subspa
es) if and only if its linear span is the spa
e of all matri
es. A proof will bepresented of a joint result with Heydar Radjavi that an irredu
ible semigroup is �nite, 
ountable or bounded ifthe range of a non-zero linear fun
tional restri
ted to the semigroup has the 
orresponding property. Anotherjoint result with Radjavi gives a su�
ient 
ondition that an irredu
ible semigroup be similar to a semigroup
onsisting of multiples of unitary matri
es. In a sense, the opposite of �irredu
ible" is �triangularizable." Tothe extent that time permits, there will be dis
ussion of su�
ient 
onditions (due to many mathemati
ians)that a semigroup be similar to a semigroup of upper triangular matri
es.Rump, Siegfried M., Hamburg University of Te
hnology, Hamburg, Germany[CT, Mon. 17:45, Room 3℄The ratio between the Toeplitz and the unstru
tured 
ondition numberRe
ently we showed that the ratio between the normwise Toeplitz stru
tured 
ondition number of a linearsystem and the general unstru
tured 
ondition number has a �nite lower bound. However, the bound was notexpli
it, and nothing was known about the quality of the bound. In a joint work with H. Sekigawa we givean expli
it lower bound only depending on the dimension, and we show that this bound is almost sharp. Thesolution of both problems is based on the minimization of the smallest singular value of a 
lass of Toeplitzmatri
es and its ni
e 
onne
tion to a lower bound on the 
oe�
ients of the produ
t of two polynomials.(with H. Sekigawa)Russo, Maria Rosaria, Department of Mathemati
s - University of Padua, Padova, Italy[CT, Tue. 16:55, Room 4℄On some general determinantal identities of Sylvester typeSylvester's determinantal identity is a well-known identity in matrix analysis whi
h expresses a determinant
omposed of bordering determinants in terms of the original one. It has been extensively studied, both inthe algebrai
 and in the 
ombinatorial 
ontext and is frequently used in 
ontext as approximation, linearprogramming and extrapolation algorithms. Several authors have deepened the main property of this 
lassi
alSylvester's identity, some of these have obtained signi�
ant results as generalized formulas. In this talk wepresent a new generalization of the Sylvester's determinantal identity, whi
h expresses the determinant of amatrix in relation with the determinant of the bordered matri
es obtained adding more than one row and one
olumn to the original matrix.(with Mi
hela Redivo-Zaglia)
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Rust, Bert W., National Institute of Standards and Te
hnology, Gaithersburg, MD, USA[MS3, Thu. 16:55, Room 2℄A Trun
ated Singular Component Method for Ill-Posed ProblemsThe trun
ated singular value de
omposition (TSVD) method for solving ill-posed problems regularizes thesolution by negle
ting 
ontributions in the dire
tions de�ned by singular ve
tors 
orresponding to small sin-gular values. In this work we propose an alternate method, negle
ting 
ontributions in dire
tions where themeasurement value is below the noise level. We 
all this the trun
ated singular 
omponent method (TSCM).We present results of this method on test problems, 
omparing it with the TSVD method and with Tikhonovregularization.(with Dianne P. O'Leary, University of Maryland)Salam, Ahmed, Université du Littoral-C�te d'Opale, Calais, Fran
e[CT, Tue. 18:10, Room 4℄A stru
ture-preserving Arnoldi-like method for a 
lass of stru
tured matri
esThe aim of this talk is to introdu
e an Arnoldi-like method that preserves the stru
tures of a large setof stru
tured matri
es. Interesting parti
ular elements of su
h set are Hamiltonian, skew-Hamiltonian andsymple
ti
 matri
es. The obtained stru
ture-preserving size redu
tion is 
ru
ial for the 
omputation of severaleigenvalues of su
h large and sparse stru
tured matri
es.Sán
hez Perales, Salvador, Benemérita Universidad Autónoma de Puebla, Puebla, Méxi
o[CT, Thu. 11:00, Room 3℄ Manifold of proper elementsLet X be a Bana
h spa
e and let B(X) denote the spa
e of all bounded linear transformation on X . With
Eig(X) = {(λ, L,A) ∈ C× P1(X)× B(X) : A(L) ⊂ L and A|L = λI}we denote the manifold of proper elements of X and let (λ0, L0, A0) ∈ Eig(X) be a �x arbitrary element. Inthe �rst part of this note we give ne
essary and su�
ient 
onditions that (λ, L,A) ∈ Eig(X) using the systemof equations determinate with (λ0, L0, A0) ∈ Eig(X). In the se
ond part we apply this result to des
riberelation between multipli
ity of eigenvalue λ0 of the operator A0 and the spe
trum of the operator Â0 fromquotient X/L0 to itself de�nite with Â0(x+ L0) = A0(x) + L0.(with S. Djordjevi
)Sat�, Kenzi, Tamagawa University, Tokyo, Japan[CT, Thu. 12:15, Room 4℄The algebrai
 relations of 
urvatures of PL manifoldsThere are two types of the Gauss-Bonnet theorems for PL manifolds, Ban
ho�'s theorem (the sum of Ban-
ho�'s 
urvature of all verti
es is equal to the Euler number) and Homma's theorem (the alternative sum ofHomma's 
urvature of all fa
es is equal to the Euler number). In this talk, the algebrai
 relations of these
urvatures are 
onsidered.
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S
hae�er, Elisa, Universidad Autónoma de Nuevo León, San Ni
olás de los Garza, Méxi
o[CT, Fri. 11:25, Room 3℄Lo
ally 
omputable approximations of absorption times for graph 
lusteringGraph 
lustering aims to partition a given graph into groups of tightly interrelated verti
es. In lo
al 
lustering,the aim is to identify the group in whi
h a given seed vertex belongs. We study the problem of lo
al 
lusteringbased on the mathemati
s of random walks in graphs. In this work, we �rst algebrai
ally express the absorptiontimes of a random walk to the seed vertex in terms of the spe
trum of a matrix representation of the graph'sadja
en
y relation. We argue and experimentally demonstrate that a single eigenve
tor often su�
es toobtain a good approximate for the absorption times from all other verti
es to the seed. We then use a lo
ally
omputable gradient-des
ent method to approximate this eigenve
tor based on its formulation in terms of anoptimization problem of the Rayleigh quotient. In order to 
arry out the lo
al 
lustering, we interpret the
omponents of the resulting approximation ve
tor as vertex similarities and 
ompute the 
luster of the seedvertex as a standard two-
lassi�
ation task on the 
omponents of the ve
tor. At no phase of the proposedmethod for lo
al 
lustering is it ne
essary to resort to global information of the graph. This method tiestogether a well-established �eld of spe
tral 
lustering and the absorption times of a random walk, hen
epermitting extensions to 
lustering dire
ted graphs in terms of lo
al approximations to absorption times,whereas mu
h of the matrix algebra used in spe
tral 
lustering of undire
ted graphs is not dire
tly appli
ableto the asymmetri
 matri
es that rise from dire
ted graphs.(with Pekka Orponen and Vanesa Avalos)S
ha�rin, Burkhard, Ohio State University, Columbus, OH, USA[CT, Wed. 11:00, Room 4℄Total least-squares regularization of Tykhonov type and an an
ient ra
etra
k in CorinthIn this 
ontribution a variation of Golub/Hansen/O'Leary's Total Least-Squares (TLS) regularization te
h-nique is introdu
ed, based on the Hybrid APproximation Solution (HAPS) within an Errors-in-Variables (EIV)model. After developing the (nonlinear) estimator through a traditional Lagrange approa
h, the new methodis applied to a problem from ar
heology. There, both the radius and the 
enter of a 
ir
le have to be found,of whi
h only a small part of the ar
 had been surveyed in-situ, thereby giving rise to an ill-
onditioned set ofequations. A

ording to the ar
heologists involved, this 
ir
ular ar
 served as the starting line of a ra
etra
kin the an
ient Greek stadium of Corinth, 
a.500 BC. The present study 
ompares previous estimates of the
ir
le parameters with the newly developed �Regularized TLS Solution of Tykhonov type".(with Kyle Snow)S
hneider, Hans, University of Wis
onsin, Madison, Madison, WI, USA[MS7, Wed. 12:15, Room 3℄Nonnegative linear algebra and max linear algebra: where's the di�eren
e?There are substantial similarities in 
orresponding results in the two forms of linear algebra mentioned in thetitle, and there are di�eren
es. We brie�y explore the reason for the di�eren
es and some 
onsequen
es.
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Sebeldin, Anatoly, University UGANC, Guinea, Conakry, Guinea[CT, Thu. 11:50, Room 5℄Algorithm resolving problem of determination of �nite 
y
li
group by its automorphism groupWe say, that group G is determined by its automorphism group in some 
lass X if Aut(G) ∼= Aut(H) imply
H ∼= G for any H ∈ X. For any �nite 
y
li
 group the matrix of its automorphism group and the algorithmof 
omparison of these matri
es are obtained. Thus, the problem of determination of �nite 
y
li
group Z(n)is redu
ed to sear
h a number m 6= n su
h, that A(n) = A(m) where A(n) and A(m) are the matri
es of
Aut(Z(n)) and Aut(Z(m)).Literature:[1℄ Dètermination d'un groupe 
y
lique par son groupe des automorphismes A. Sebeldin, A.Sylla, Revue des s
ien
es. UGANC, 4 (2002), 26-30.(with V. K. Vildanov and A. L. Sylla)Seddighin, Morteza, Indiana University East, Ri
hmod, Indiana[CT, Wed. 12:15, Room 4℄ Matrix Optimization in Statisti
sStatisti
ians have been dealing with matrix optimization problems whi
h similar to Matrix Antieigenvalueproblems. These problems o

ur in areas su
h as statisti
al e�
ien
y and 
anoni
al 
orrelations. Statisti-
ians have generally took a variational approa
h to treat these matrix optimization problems. However, wewill use the te
hniques we have developed for 
omputation of Antieigenvalues to provide simpler solutions.Additionally, these te
hniques have enabled us to generalize some of the matrix optimization problems instatisti
s from positive matri
es to normal a

retive matri
es and operators. One the te
hniques we use isa Two Nonzero Component Lema whi
h is �rst proved by the author. Another te
hnique is 
onverting theAntieigenvalue problem to a 
onvex programming problem. In the latter method the problem is redu
ed to�nding the minimum of a 
onvex fun
tion on the numeri
al range of an operator (whi
h is a 
onvex set).Semrl, Peter, University of Ljubljana, Ljubljana, Slovenia[CT, Tue. 11:25, Room 3℄ Lo
ally linearly dependent operatorsLet U and V be ve
tor spa
es. Linear operators T1, . . . , Tn : U → V are lo
ally linearly dependent if forevery u ∈ U the ve
tors T1u, . . . , Tnu are linearly dependent. Some re
ent results on su
h operators will bepresented.Sendov, Hristo, The University of Western Ontario, London, Canada[CT, Thu. 11:50, Room 3℄ Spe
tral ManifoldsIt is well known that the set of all n× n symmetri
 matri
es of rank k is a smooth manifold. This set 
an bedes
ribed as those symmetri
 matri
es whose ordered ve
tor of eigenvalues has exa
tly n − k zeros. The setof all ve
tors in Rn with exa
tly n− k zero entries is itself an analyti
 manifold. In this work, we 
hara
terizethe manifoldsM in Rn with the property that the set of all n×n symmetri
 matri
es whose ordered ve
tor ofeigenvalues belongs to M is a manifold. In parti
ular, we show that if M is a C2, C∞, or Cω manifold thenso is the 
orresponding matrix set. We give a formula for the dimension of the matrix manifold in terms ofthe dimension of M .(with A. Daniilidis, J. Mali
k, and A. Lewis) 64



Sergeev, Sergey, University of Birmingham, Birmingham, United Kingdom[MS7, Tue. 17:20, Room 3℄On Kleene stars and interse
tion of �nitely generated semimodulesIt is known that Kleene stars are fundamental obje
ts in max-algebra and in other algebrai
 stru
tures withidempotent addition. They play important role in solving 
lassi
al problems in the spe
tral theory, and alsoin other respe
ts. On the other hand, the approa
h of tropi
al 
onvexity puts forward the tropi
al 
ellularde
omposition, meaning that any tropi
al polytope (i.e., �nitely generated semimodule) 
an be 
ut into a �nitenumber of 
onvex pie
es, and subsequently treated as a 
ellular 
omplex. We show that any 
onvex pie
e ofthis 
omplex is max-algebrai
 
olumn span of a uniquely de�ned Kleene star. We provide some eviden
e thatthe tropi
al 
ellular de
omposition 
an be used as a purely max-algebrai
 tool, with the main fo
us on theproblem of �nding a point in the interse
tion of several �nitely generated semimodules.Shader, Bryan, University of Wyoming, Laramie, US[MS1, Thu. 11:50, Room 1℄ Average minimum rank of a graphWe establish asymptoti
 upper and lower bounds on the average minimum rank of a graph using probabilisti
,linear algebrai
 and graph theoreti
 te
hniques.(with Fran
es
o Barioli, Shaun Fallat, Tra
y Hall, Daniel Hershkowitz, Leslie Hogben, Ryan Martin, and Heinvan der Holst)Shahryari, Mohammad, Tabriz University, Tabriz, Iran, Tabriz, Iran[CT, Thu. 12:15, Room 5℄
Z2-graded symmetry 
lasses of tensorsIn this paper, we de�ne a natural Z2-gradation on the symmetry 
lass of tensors Vχ(G). We give thedimensions of even and odd parts of this gradation. Also we prove that the even part (the odd part) of thisgradation is zero, if and only if the whole symmetry 
lass is zero.Shaked-Monderer, Naomi, Emek Yezreel College, Emek Yezreel, Israel[Plenary, Tue. 8:10�9:05℄ Completely Positive Matri
es and the CP-rankA matrix A is 
ompletely positive if A = BBT for some nonnegative matrix B. The minimum number of
olumns in su
h B is the 
p-rank of A.We review the main results on 
omplete positivity and in parti
ular re-examine results on the possible
p-ranks of 
ompletely positive matri
es.Singer, Ivan, Romanian A
ademy of S
ien
es, Bu
harest, Romania[MS7, Wed. 10:35, Room 3℄ Max-min 
onvexityThe max-min semiring is the set R = R ∪ {−∞,+∞} endowed with the operations ⊕ = max,⊗ = min. Westudy the semimodule Rn

= R × ... × R (n times), with the operations ⊕ and ⊗ de�ned 
omponentwise. Asubset G of Rn (respe
tively, a fun
tion f : R
n → R) is said to be max-min 
onvex if the relations x, y ∈ G(respe
tively, x, y ∈ Rn) and α, β ∈ R, α ⊕ β = +∞, where +∞ is the neutral element for ⊗ = min, imply65



(α ⊗ x) ⊕ (β ⊗ y) ∈ G (respe
tively, f((α ⊗ x) ⊕ (β ⊗ y)) ≤ (α ⊗ f(x)) ⊕ (β ⊗ f(y)). We give some resultson max-min 
onvexity of sets and fun
tions in R
n (e.g. on segments, semispa
es, separation, multi-order
onvexity, ...) that 
orrespond to some results for max-plus 
onvexity, repla
ing ⊗ = + of the max-plus 
aseby the semi-group operation ⊗ = min of the max-min 
ase.Referen
esK. Zimmermann, Convexity in semimodules. Ekonom.-Mat. Obzor 17 (1981), 199-213.V. Niti
a and I. Singer, Contributions to max-min 
onvex geometry. I: Segments. Lin. Alg. Appl. 428 (2008),1439-1459. II: Semispa
es and 
onvex sets. Ibidem 2085-2115.Sinkovi
, John, Te
hnis
he Universiteit Eindhoven, Eindhoven, Netherlands[CT, Thu. 18:35, Room 3℄An upper bound for the maximum nullity of a symmetri
 matrix whose graph is outerplanarLet G = (V,E) be a graph with V = {1, 2, . . . , n}. De�ne S(G,R) as the set of all n×n real-valued symmetri
matri
es A = [ai,j ] with ai,j 6= 0, i 6= j if and only if ij ∈ E. ByM(G) we denote the largest possible nullity ofany matrix A ∈ S(G). The path 
over number of a graph G, denoted P (G), is the minimum number of vertexdisjoint paths o

urring as indu
ed subgraphs of G whi
h 
over all the verti
es of G. The path 
over numberof a graph G has been linked to the maximum nullity of G. It has been shown by Duarte and Johnson that fora tree T , P (T ) = M(T ). Barioli, Fallat, and Hogben have shown that for a uni
y
li
 graph G, P (G) = M(G)or P (G) = M(G) + 1. In this talk I will show that for outerplanar graphs the path 
over number is anupperbound for the maximum nullity and show that equality holds for partial 2-paths, whi
h are outerplanar.Sivi
, Klemen, Institute of Mathemati
s, Physi
s and Me
hani
s, Ljubljana, Slovenia[CT, Thu. 10:35, Room 4℄ On varieties of 
ommuting triplesThe set C(3, n) of all triples of 
ommuting n×nmatri
es over an algebrai
ally 
losed �eld F is a variety in F 3n2de�ned by 3n2 equations, whi
h are relations of 
ommutativity. The problem �rst proposed by Gerstenhaberasks to determine for whi
h natural numbers n this varitey is irredu
ible. This is equivalent to the problemwhether C(3, n) equals to the Zariski 
losure of the subset of all triples of generi
 matri
es (i.e. matri
eshaving n distin
t eigenvalues). The answer is known to be positive for n ≤ 7 and negative for n ≥ 30. Usingsimultaneous 
ommutative perturbations of pairs of matri
es in the 
entralizer of the third matrix we provethat C(3, 8) is also irredu
ible.�migo
, Helena, University College Dublin, Dublin, Ireland[MS8, Mon. 17:20, Room 1℄An example of 
onstru
ting a nonnegative matrix with given spe
trumWe say that a list of n 
omplex numbers σ is the nonzero spe
trum of a nonnegative matrix, if thereexists a nonnegative integer N su
h that σ together with N zeros added to it is the spe
trum of some

(n + N) × (n + N) nonnegative matrix. Boyle and Handelman 
hara
terized all lists of n 
omplex numbersthat 
an be the nonzero spe
trum of a nonnegative matrix. In this talk we will present a 
onstru
tive proofthat τ(t) = (3 + t, 3− t,−2,−2,−2) is the nonzero spe
trum of some nonnegative matrix for every t > 0. Wewill give a bound for the number of zeros that needs to be added to τ(t) to a
hieve a nonnegative realization.We will dis
uss how the method presented 
ould be applied to more general situations.(with La�ey, Thomas) 66



Soares, Graça, University of Tras-os-Montes and Alto Douro, Vila Real, Portugal[CT, Mon. 17:45, Room 4℄Inequalities on an inde�nite inner produ
t spa
eWe study some matrix inequalities on an inde�nite inner produ
t spa
e, indu
ed by a selfadjoint involution J,for J-selfadjoint matri
es with non-negative eigenvalues. In parti
ular, some 
hara
terizations of the J-
haoti
order are obtained.(with N. Bebiano et al.)Spitkovsky, Ilya, College of William and Mary, Bla
ksburg, VA, USA[Plenary, Fri. 9:10�10:05℄On the 
urrent state of the fa
torization problem for almost periodi
 matrix fun
tionsFa
torization of almost periodi
 matrix fun
tions arises naturally in a variety of problems, both theoreti
aland applied, and for many of them the matrix in question is 2-by-2 and triangular. Even in this setting thefa
torability properties remain a mystery, in striking di�eren
e with both the s
alar almost periodi
 
ase andwith purely periodi
 matrix 
ase. We will give a survey of available approa
hes to 
onstru
tive fa
torizationof matri
es in question, and their relation to 
ertain systems of linear equations.Stefan, Wolfgang, Arizona State University, Tempe, Arizona[MS3, Fri. 11:25, Room 2℄Regularizing Least Squares with the Con
entration MethodWe present a novel de
onvolution approa
h that simultaneously deblurs and dete
ts edges in pie
ewise smoothsignals. The edges and smooth regions, separated by jump dis
ontinuities, are both preserved. The methoduses a two step pro
edure: The polynomial annihilation edge dete
tion method 
ombined with total variation(TV) de
onvolution obtains an estimate of the lo
ation of jump dis
ontinuities in blurred noisy data. Thisinformation is used to determine the order for a higher-order TV regularization whi
h is then utilized in thesignal restoration. As 
ompared to those obtained with standard �rst order TV, signal restorations are morea

urate representations of the true signals, as measured in a relative l2 norm, and 
an also be used to obtaina more a

urate estimation of the lo
ations and sizes of the true jump dis
ontinuities.(with Rosemary Renaut and Anne Gelb)Stosi
, Marko, Instituto de Sistemas e Roboti
a, IST, Lisbon, Portugal[CT, Mon. 12:25, Room 3℄ On Generalized Pro
rustes ProblemIn this talk we present a new approa
h to the generalized Pro
rustes problem: For given real matri
es
A ∈ Rn×3 and B ∈ Rn×2, �nd the Stiefel matrix Q ∈ R3×2 (i.e. su
h that QTQ = I2), that minimizes theFrobenius norm of B − AQ. We rewrite this problem as the more general Quadrati
 Programming program,and give fast algorithm for its (partial) solutions. The solution is based on the 
omputation of 
onvex hulls ofvarious sets of matri
es.(with João Xavier)
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Strong, David, Pepperdine University, Malibu, California, USA[MS4, Wed. 11:50, Room 2℄A Java Applet and Introdu
tory Tutorial for the Ja
obi, Gauss-Seidel and SOR MethodsI will dis
uss a Java applet, tutorial and exer
ises that are designed to allow both students and instru
torsto experiment with and visualize the Ja
obi, Gauss-Seidel and SOR Methods in solving systems of linearequations. The applet is for working with 2 x 2 systems. The tutorial in
ludes an analysis (using eigenvaluesand spe
tral radius) of these methods. The exer
ises are designed to be done using the applet in order to moreeasily investigate ideas and issues that are often not dealt with when these methods are �rst introdu
ed, butthat are fundamental to numeri
al analysis and linear algebra, su
h as eigenvalues/ve
tors and 
onvergen
erates.Stuart, Je�rey, Pa
i�
 Lutheran University, Ta
oma, USA[CT, Mon. 11:35, Room 4℄ Spe
trally Arbitrary Ray PatternsAn n×n ray pattern A is said to be spe
trally arbitrary if for every moni
 n-th degree polynomial p(x) with
omplex 
oe�
ients, there is a 
omplex matrix in the pattern 
lass of A possessing p(x) as its 
hara
teristi
polynomial. It is shown that every n × n irredu
ible, spe
trally arbitrary ray pattern has at least 3n − 1nonzero entries. A 
lass of n×n irredu
ible, spe
trally arbitrary ray patterns with exa
tly 3n nonzero entriesfor ea
h integer n with n > 3 is exhibited. The main tool employed is the nilpotent Ja
obi method, whi
hpreviously has been used in the study of irredu
ible, spe
trally arbitrary sign patterns.Szyld, Daniel, Temple University, Phialdelphia, USA[MS8, Tue. 10:35, Room 2℄On General Matri
es Having the Perron-Frobenius PropertyWe say that a matrix has the Perron-Frobenius property if its spe
tral radius is an eigenvalue for whi
hthere is an entry-wise nonnegative eigenve
tor. Matri
es having the Perron-Frobenius property may be viewedas generalizations of nonnegative matri
es. We 
onsider spa
es 
onsisting of su
h generalized nonnegativematri
es and study some of their topologi
al aspe
ts su
h as 
onne
tedness and 
losure. In addition, we
ompletely des
ribe the similarity transformations leaving su
h spa
es invariant. We prove some new resultsneeded for the analysis mentioned above, in whi
h we show the existen
e of orthogonal matri
es 
lose to theidentity whi
h map semipositive ve
tors to positive ones. This new tool may be useful in other 
ontexts aswell.(with Elhashash, Abed)Szyld, Daniel, Temple University, Phialdelphia, USA[MS8, Tue. 11:25, Room 2℄Convergen
e of Stationary Iterative Methods for Hermitian Semide�nite Linear SystemsA simple proof is presented of a quite general theorem on the 
onvergen
e of stationary iterations for solvingsingular linear systems whose 
oe�
ient matrix is Hermitian and positive semide�nite. In this manner, elegantproofs are obtained of some known 
onvergen
e results, in
luding the ne
essity of the P -regular splittingresult due to Keller, as well as re
ent results involving generalized inverses. Other generalizations are alsopresented. These results are then used to analyze the 
onvergen
e of several versions of algebrai
 additive andmultipli
ative S
hwarz methods for Hermitian positive semide�nite systems.(with Frommer, Andreas and Nabben, Reinhard) 68



Tam, Bit-Shun, University of Birmingham, Birmingham, UK[MS1, Fri. 16:45, Room 1℄Maximizing spe
tral radius of unoriented Lapla
ian matrixFor a (simple) graph G, by the unoriented Lapla
ian matrix of G we mean the matrix K(G) = D(G)+A(G),where A(G), D(G) denote respe
tively the adja
en
y matrix and the diagonal matrix of vertex degrees of G.In this talk, I'll report on re
ent progress in the problem of maximzing the spe
tral radius of the unorientedLapla
ian matrix over various 
lasses of graphs. Our treatment depends on the theory of threshold graphs,together with following new result: Let G be a graph. Let V1 . . . , Vr be the equivalen
e 
lasses for theequivalen
e relation ∼ on V (G) de�ned by: u ∼ v if and only if N(u) \ {v} = N(v) \ {u}, where N(u) denotesthe neighbor set of u in G. For j = 1, . . . , r, let nj denote the 
ardinality of Vj and let δj be the 
ommondegree of the verti
es in Vj . Let I1 (respe
tively, I2) 
onsist of all indi
es j su
h that nj > 1 and G[Vj ] is anull graph (respe
tively, a 
omplete graph). For i, j = 1, . . . , r, let γij equal 1 if there is an ar
 between Vi and
Vj and equal 0, otherwise. Also, let B = (bij) denote the r× r matrix given by: bij equals γijnj for i 6= j andequals γii(ni−1) for i = j. Then the spe
trum of K(G) is given by: σ(K(G)) = σ(∆+B)∪{δi(ni−1 times :
i ∈ I1} ∪ {δi − 1(ni − 1) times : i ∈ I2}, where ∆ = diag(δ1, . . . , δr).(with Ding-Jung Chang and Shui-Hei Wu)Tanguay, Denis, Université du Québe
 à Montréal (UQAM), Montréal, Canada[MS4, Tue. 17:45, Room 1℄ A fundamental paradox in learning algebraThe generalizing, formalizing and unifying nature of some of the 
on
epts of Linear Algebra leads to ahigh level of abstra
tion, whi
h in turn 
onstitutes a sour
e of di�
ulties for students. When asked to dealwith new expressions, new symbolism and rules of 
al
ulation, students fa
e what resear
hers in mathemati
sedu
ation � su
h as Dorier, Rogalski, Sierpinska or Harel � have identi�ed as `the obsta
le of formalism'.Tea
hers bring in new mathemati
al obje
ts, sometimes in a non expli
it way, by using at on
e the symbolsreferring to these obje
ts or to the related relations, without explaining or justifying the meaning or therelevan
e of their 
hoi
es, regarding this new symbolism. Cal
ulations and manipulations with these newobje
ts build up to new algebras (ve
tor or matrix algebras) more 
omplex than basi
 (high s
hool) algebra,but nevertheless synta
ti
ally modelled on it. The gap thus 
aused reveals itself when students bring outin
onsistent or meaningless writings : �The obsta
le of formalism manifests itself in students who operateat the level of the form of expressions without seeing these expressions as referring to something other thanthemselves. One of the symptoms is the 
onfusion between 
ategories of mathemati
al obje
ts; for example,sets are treated as elements of sets, transformations as ve
tors, relations as equations, ve
tors as numbers, andso on� (Sierpinska et al., 1999, p. 12). For too many students attending their �rst 
ourse in Linear Algebra,the latter is nothing but a 
atalogue of very abstra
t notions, for whi
h they have almost no understanding,being overwhelmed by a �ood of new words, new symbols, new de�nitions and new theorems (Dorier, 1997).Our talk will be based on a study 
ondu
ted within the 
ontext of a master degree in mathemati
s edu
ation(maîtrise en dida
tique des mathématiques, Université du Québe
 à Montréal ; 
f. Corriveau & Tanguay,2007). Through this study, we tried to have a better understanding of transitional di�
ulties, due to theabrupt in
rease in what is expe
ted from students with respe
t to formalism and proof, when going fromSe
ondary s
hools to `Cegeps' (equivalent in Québe
 of `upper se
ondary' or `high-s
hool', 17-19 years of age).The Linear Algebra 
ourses having been identi�ed as those in whi
h su
h transitional problems are the mosta
ute, we �rst sele
ted, among all problems submitted in a given L. A. 
ourse � the tea
her of whi
h wasready to parti
ipate in the study � those involving a proof or a reasoning at least partly dedu
tive.Through the systemati
 analysis of these problems, we evaluated and 
ompared their level of di�
ulty, aswell as students' preparation for 
oping with su
h di�
ulties, from an `introdu
tion-to-formalism' perspe
tive.The framework used to analyse the problems stemmed from a remodelling of Robert's framework (1998). The69



remodelling was a 
onsequen
e of having 
ompared/
onfronted an a priori analysis of three problems (usingRobert's framework), with the analysis of their erroneous solutions as they appeared in twelve students'homework 
opies.Among the 
on
lusions brought up by the study, we shall be interested in the following ones
• Mathemati
al formalism allows a `
ompression' of the mathemati
al dis
ourse, simpli�
ation and sys-tematization of the syntax, by whi
h one operates on this dis
ourse with better e�
ien
y. But thisimprovement in e�
ien
y is a
hieved to the detriment of meaning. As in Blo
h and al. (2007), the study
on�rms that �...formal written dis
ourse does not 
arry per se the meaning of neither the laws that itstates nor the obje
ts that it sets forth.� For many students, symboli
 manipulations are di�
ult inLinear Algebra be
ause meaning has been lost somewhere. By trying to have a better understanding ofthe underlying obsta
le, we 
ame to identify what we 
all `the fundamental paradox in learning [a new℄algebra', some elements of whi
h will be dis
ussed further in the talk.
• The analysis of students' written produ
tions brings us to observe that in the pro
ess of proving, dif-�
ulties 
aused by the introdu
tion of new obje
ts and new rules of 
al
ulation on the one hand, anddi�
ulties related to 
ontrolling the dedu
tive reasoning and its logi
al stru
ture on the other, arereinfor
ing one another.
• A better understanding of students' errors, by an error-analysis su
h as the one done in the study, allowsa better evaluation of the di�
ulty level of what is asked to students, and thus a better understanding ofthe problems linked to a
ademi
 transitions (from lower-se
ondary to upper-se
ondary to university) inmathemati
s. Su
h analyses 
ould give Linear Algebra tea
hers better tools, for estimating the di�
ultiesin the tasks they submit to their students, as well as for understanding the underlying 
ognitive gaps andruptures. It would be advisable that tea
hers be introdu
ed to su
h error-analysis work, in the settingof their pre-servi
e or in-servi
e instru
tion.Blo
h, I., Kientega, G. & Tanguay, D. (2007). Synthèse du Thème 6 : Transition se
ondaire / post-se
ondaire et enseignement des mathématiques dans le postse
ondaire. To appear in A
tes du Colloque EMF2006. Université de Sherbrooke.Corriveau, C. & Tanguay, D. (2007). Formalisme a

ru du se
ondaire au 
ollégial : les 
ours d'Algèbrelinéaire 
omme indi
ateurs. To appear in Bulletin AMQ, Vol. XLVII, n◦4.Dorier, J.-L., Harel, G., Hillel, J., Rogalski, M., Robinet, J., Robert, A. & Sierpinska, A. (1997). L'ensei-gnement de l'algèbre linéaire en question. J.-L. Dorier, ed. La Pensée Sauvage. Grenoble, Fran
e.Harel, G. (1990). Using Geometri
 Models and Ve
tor Arithmeti
 to Tea
h High-S
hool Students Basi
Notions in Linear Algebra. International Journal of Mathemati
al Edu
ation in S
ien
e and Te
hnology, Vol21, n◦3, pp. 387-392.Harel, G. (1989). Learning and Tea
hing Linear Algebra : Di�
ulties and an Alternative Approa
h toVisualizing Con
epts and Pro
esses. Fo
us on Learning Problems in Mathemati
s, Vol. 11, n◦2, pp. 139-148.Robert, A. (1998). Outils d'analyse des 
ontenus mathématiques à enseigner au ly
ée et à l'université.Re
her
hes en dida
tique des mathématiques, vol. 18, n◦2, pp. 139-190.Rogalski, M. (1990). Pourquoi un tel é
he
 de l'enseignement de l'algèbre linéaire ? In Enseigner autrementles mathématiques en DEUG Première Année, Commission inter-IREM université (ed.), pp. 279-291. IREMde Lyon.Sierpinska, A., Dreyfus, T. & Hillel, J. (1999). Evaluation of a Tea
hing Design in Linear Algebra : theCase of Linear Transformations. Re
her
hes en dida
tiques des mathématiques, Vol. 19, n◦1, pp. 7-40.(with Corriveau, Claudia)
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Teixeira Matos, Isabel, Centro de Estruturas Lineares e Combinatórias (CELC), Lisboa, Portugal[CT, Fri. 15:55, Room 3℄A Completion Problem over the Field of Real NumbersLet F be a �eld. In 1975 G. N. de Oliveira has proposed the following 
ompletion problems: Des
ribe thepossible 
hara
teristi
 polynomials of [
A1,1 A1,2

A2,1 A2,2

]
,where A1,1 and A2,2 are square submatri
es, when some of the blo
ks Ai,j are �xed and the others vary.Several of these problems remain unsolved. We give the solution, over the �eld of real numbers, of Oliveira'sproblem where the blo
ks A1,2, A2,1 are �xed and the others vary.(with Fernando C. Silva)Trigueros, María, Depto de Matemáti
as ITAM, Méxi
o DF, Méxi
o[MS4, Mon. 12:25, Room 1℄Spanning sets and ve
tor spa
es they generate: an APOS analysisThis work forms part of a larger resear
h proje
t that aims to identify student di�
ulties with Linear Algebra
on
epts. The theoreti
al framework that we have 
hosen for this parti
ular study is APOS (A
tion � Pro
ess� Obje
t � S
hema) theory, whose e�
ien
y in identifying students' mental 
onstru
tions is well do
umentedin other areas of mathemati
s su
h as Cal
ulus, Abstra
t Algebra and Dis
rete Mathemati
s. In our previouswork (Kú et al., submitted) in looking into the mental 
onstru
tions in relation with the 
on
ept of basis,we 
ame a
ross various di�
ulties that students experien
ed with spanning sets and the ve
tor spa
es theygenerate. Our results revealed that most of the interviewed students had an a
tion or pro
ess 
on
eptionof this 
on
ept. When 
omparing the empiri
al data with the geneti
 de
omposition originally proposed forthis 
on
ept, where the 
on
epts of linear independen
e and generator set had been 
onsidered, it appearedthat most of the obsta
les had to do with what seemed to be ne
essary 
onditions to 
onstru
t the notion ofspanning set as a pro
ess. In this talk we present a study that intends to study the 
onstru
tion of the notionof spanning set and its relation with the ve
tor spa
e 
on
ept. A preliminary geneti
 de
omposition for this
on
ept was developed and instruments were designed a

ording to this geneti
 theoreti
al analysis. We willpresent the analysis of the interviews that were 
ondu
ted with students taking a Linear Algebra 
ourse. Wewill dis
uss and interpret results in terms of APOS theory.(with Ku, Darly and Oktaç, Asuman)U
hiyama, Mitsuru, Shimane University, Matsue, Shimane, Japan[CT, Mon. 18:10, Room 4℄ A New Majorization between fun
tionsLet {ai}ni=1 and {bi}ni=1 be �nite sets of real numbers, and rearrange them in de
reasing order. Then

{ai}ni=1 is said to be submajorized by {bi}ni=1 if ∑k
i=1 ai ≦

∑k
i=1 bi for 1 ≦ k ≦ n. This 
lassi
al 
on
ept-(sub)majorization- is very useful in the study of polynomials and matri
es.De�nition. For a real in
reasing fun
tion k on interval J and a nonde
reasing fun
tion h on I, we 
all k amajorization of h and denote h � k if

k(A) ≦ k(B) =⇒ h(A) ≦ h(B).A fun
tion f(t) de�ned on an interval I is 
alled an operator monotone fun
tion on I, provided A ≦ B implies
f(A) ≦ f(B) for every pair A and B. P(I) denotes the set of all operator monotone fun
tions on I, P+(I)does {f ∈ P(I) : f ≧ 0}.
LP+(I) := {h : h(t) > 0 and log h ∈ P(I◦)}. 71



P
−1
+ [a, b) := {h|h is in
reasing on [a, b) and h−1 ∈ P[0,∞)}.

P
−1
+ (a, b) is likewise de�ned.Theorem 1. For non-in
reasing sequen
es {ai}ni=1 and {bi}mi=1,
u(t) :=

∏n
i=1(t− ai) (t ≧ a1), v(t) :=

∏m
i=1(t− bi) (t ≧ b1).Then u(t) ∈ P

−1
+ [a1,∞), and

m ≦ n,

k∑

i=1

bi ≦
k∑

i=1

ai (1 ≦ k ≦ m) =⇒ v � u ([a1,∞)).Produ
t Lemma. Let I be a right open interval with end points a, b and h(t), g(t) non-negative fun
tionsde�ned on I su
h that the produ
t hg is an in
reasing fun
tion with hg(a+ 0) = 0, hg(b− 0) =∞. Then for
ψ1, ψ2 in P+[0,∞)

g � hg =⇒ h � hg, ψ1(h)ψ2(g) � hg.Produ
t Theorem. For every right open interval I,
P
−1
+ (I) · P−1

+ (I) ⊂ P
−1
+ (I), LP+(I) · P−1

+ (I) ⊂ P
−1
+ (I).Further, let gi(t) ∈ LP+(I) for 1 ≦ i ≦ m and hj(t) ∈ P

−1
+ (I) for 1 ≦ j ≦ n. Then for ψi, φj ∈ P+[0,∞)

m∏

i=1

ψi(gi)

n∏

j=1

φj(hj) �
m∏

i=1

gi

n∏

j=1

hj.Proposition. For 0 < β ≦ α,
tα � tαe−t−β

.Moreover, if 1 ≦ α, then
tαe−t−β ∈ P

−1
+ [0,∞).Theorem 2. Let I be a right open interval, h(t) ∈ P

−1
+ (I), g(t) ∈ LP+(I), and let h̃(t) ≧ 0 be non-de
reasingfun
tion on I. Then the fun
tion ϕ on (0,∞) de�ned by

ϕ(g(t)h(t)) = g(t)h̃(t) (t ∈ I)belongs to P+[0,∞), and for A,B with σ(A), σ(B) ⊂ I

A ≦ B ⇒
{
ϕ(g(A)

1
2h(B)g(A)

1
2 ) ≧ g(A)

1
2 h̃(B)g(A)

1
2 ,

ϕ(g(B)
1
2 h(A)g(B)

1
2 ) ≦ g(B)

1
2 h̃(A)g(B)

1
2 .Furthermore, if h̃ ∈ P+(I), then

A ≦ B ⇒
{
ϕ(g(A)

1
2 h(B)g(A)

1
2 ) ≧ ϕ(g(A)

1
2h(A)g(A)

1
2 ) = g(A)h̃(A),

ϕ(g(B)
1
2 h(A)g(B)

1
2 ) ≦ ϕ(g(B)

1
2h(B)g(B)

1
2 ) = g(B)h̃(B).Corollary 1.(Furuta) For p ≧ 1, r > 0

0 ≦ A ≦ B ⇒
{

(A
r
2BpA

r
2 )

1+r
p+r ≧ (A

r
2ApA

r
2 )

1+r
p+r ,

(B
r
2ApB

r
2 )

1+r
p+r ≦ (B

r
2BpB

r
2 )

1+r
p+r .Corollary 2. (Ando, F-F-K, U) Suppose p ≧ 1, r > 0 and 0 < α ≦ r

p+r . Then
A ≦ B ⇒

{
(e

r
2
AepBe

r
2
A)

r
p+r ≧ (e

r
2
AepAe

r
2
A)

r
p+r ,

(e
r
2
BepAe

r
2
B)

r
p+r ≦ (e

r
2
BepBe

r
2
B)

r
p+r .72



Referen
es:M. U
hiyama, A new majorization between fun
tions, polynomials, and operator inequalities, J.F.A(2006)221�244,M. U
hiyama, A new majorization between fun
tions, polynomials, and operator inequalities II, J. Math. So
.Japan (2008) 291�310.Uhlig, Frank, Mathemati
s, Auburn University, Auburn, AL 36849, USA[CT, Wed. 10:35, Room 4℄Convex and Non-
onvex Optimization Problems for the Field of Values of a MatrixWe introdu
e and study numeri
al algorithms that 
ompute the minimal and maximal distan
es between
0 ∈ C and points in the �eld of values F (A) = {x∗Ax | x ∈ Cn , ‖x‖2 = 1} ⊂ C for a 
omplex matrix An,n.Finding the minimal distan
e from 0 ∈ C to F (A) is a 
onvex optimization problem if 0 /∈ F (A) and thusit has a unique solution, 
alled the Crawford number whose magnitude relates information on the stabilitymargin of the asso
iated system. If 0 ∈ F (A), this is a non-
onvex optimization problem and 
onsequentlythere 
an be multiple solutions or lo
al minima that are not so globally. Non-
onvexity also holds for themaximal distan
e problem between points in F (A) and 0 ∈ C. This maximal distan
e is 
ommonly 
alled thenumeri
al radius numrad(A) for whi
h the inequality ρ(A) ≤ numrad(A) ≤ ‖A‖ is well established.Both 
ases 
an be solved e�
iently numeri
ally by using ideas from geometri
 
omputing, eigenanalyses oflinear 
ombinations of the hermitean and skew-hermitean parts of A and the rotation method introdu
ed byC. R. Johnson in the 1970s to 
ompute the boundary of the �eld of values.Vallejo, Ernesto, Instituto de Matemáti
as, Morelia, Méxi
o[CT, Mon. 12:25, Room 4℄Additivity obstru
tions for integral matri
es and pyramidsThere are two important notions in Dis
rete Tomography: uniqueness and additivity. A �nite set S oflatti
e points in 3-dimensional eu
lidean spa
e is 
alled a set of uniqueness if it is uniquely determined bythe 
ardinalities of the interse
tions of S with the planes parallel to the 
oordinate planes. The additivity
ondition is an auxiliary one and is su�
ient for uniqueness but not ne
essary. Fisburn, Lagarias, Reedsand Shepp gave 
omplete lists of obstru
tions for uniqueness (bad 
on�gurations) and for additivity (weaklybad 
on�gurations). They raised the following question: Is there an upper bound on the weights of the bad
on�gurations one needs to 
onsider to determine uniqueness of an arbitrary set S? A similar question 
anbe asked for additivity. For example, if one 
onsiders latti
e sets in 2-dimensional eu
lidean spa
e, one 
an
onsider uniqueness and additivity with respe
t to lines parallel to the 
oordinate axes. In this 
ase only bad
on�gurations of weight 2 are needed to determine uniqueness (this result goes ba
k to Ryser). In this talkque answer the question of Fishburn et al. and show that there is no upper bound on the weights of the bad
on�gurations one needs to 
onsider to determine uniqueness (as de�ned above) and additivity of �nite latti
esets in 3-dimensional spa
e.(with Miguel Santoyo)van den Driess
he, Pauline, University of Vi
toria, Vi
toria, Canada[MS7, Mon. 11:10, Room 2℄Bounds for the Perron root using max eigenvaluesUsing the te
hniques of max algebra, a new proof of Al'pin's lower and upper bounds for the Perron root ofa nonnegative matrix is given. The bounds depend on the row sums of the matrix and its dire
ted graph. If73



the matrix has zero diagonal entries, then these bounds may improve the 
lassi
al row sum bounds. This isillustrated by a generalized tournament matrix.(with Elsner, Ludwig)van der Holst, Hein, Eindhoven University of Te
hnology, Eindhoven, The Netherlands[MS1, Thu. 11:00, Room 1℄Computing the minimum rank of partial 2-treesA 2-tree is re
ursively de�ned as follows: the 
omplete graph on three verti
es is a 2-tree, and if we have a
2-tree, a larger 
an be obtained by adding a new vertex adja
ent to the endpoints of an edge in the 2-tree.A partial 2-tree is a subgraph of a 2-tree. The minimum rank of a graph G is the smallest rank over allsymmetri
 matri
es A = [ai,j ] with ai,j 6= 0, i 6= j if and only if ij is an edge of G. In this talk, I presentan e�
ient algorithm to 
ompute the minimum rank of a partial 2-tree, and show how it 
an be extended to
ompute other minimum rank-type problems.Vander Meulen, Kevin, Redeemer University College, An
aster, Ontario, Canada[MS1, Fri. 15:55, Room 1℄ Sparse Inertially Arbitrary Sign PatternsThe inertia of a real matrix A is an ordered triple i(A) = (n1, n2, n3) where n1 is the number of eigenvalues of
A with positive real part, n2 is the number of eigenvalues of A with negative real part, and n3 is the numberof eigenvalues of A with zero real part. A sign pattern is a matrix whose entries are in {+,−, 0}. An order nsign pattern S is inertially arbitrary if for every ordered triple (n1, n2, n3) with n1 +n2 +n3 = n there is a realmatrix A su
h that A has sign pattern S and i(A) = (n1, n2, n3). We des
ribe some te
hniques in determininga pattern is inertially arbitrary. We present some irredu
ible inertially arbitrary patterns of order n with lessthan 2n entries.(with L. Vanderspek and M. Cavers)Van Dooren, Paul, Université 
atholique de Louvain, Louvain-la-Neuve, Belgium[Plenary, Thu. 9:10�10:05℄Some graph optimization problems in data miningGraph-theoreti
 ideas have be
ome very useful in uderstanding modern large-s
ale datamining te
hniques.We show in this talk that ideas from optimization are also quite useful to better understand the numeri
albehaviour of the 
orresponding algorithms. We illustrate this 
laim by looking at two spe
i�
 graph theoreti
problems and their appli
ation in datamining. The �rst problem is that of reputation systems where thereputation of obje
ts and voters on the web are estimated; the se
ond problem is that of estimating thesimilarity of nodes of large graphs. These two problems are also illustrated using 
on
rete appli
ations indatamining.Van Dooren, Paul, Université 
atholique de Louvain, Louvain-la-Neuve, Belgium[MS5, Thu. 11:00, Room 2℄H2 Approximation and Tangential Rational InterpolationWe 
onsider the problem of approximating an m×p rational transfer fun
tion H(s) of high degree by another
m × p rational transfer fun
tion Ĥ(s) of mu
h smaller degree. We derive the gradients of the H∈-norm ofthe approximation error and show how this 
an be solved via tangential interpolation. We then extend theseresults to the dis
rete-time 
ase, for both time-invariant and time-varying systems.(with K. Gallivan and P.A. Absil) 74



Vargas, Xaab Nop, ICYTDF, Méxi
o, Méxi
o[CT, Mon. 17:45, Room 2℄Students di�
ulties with the 
on
ept of ve
tor spa
e from point of view of APOS TheoryVe
tor spa
e theory, being abstra
t in nature and having an epistemologi
al status di�erent from mostmathemati
al topi
s taught at the undergraduate level, is a major sour
e of di�
ulty for beginning linearalgebra students (Dorier, 1995a; Dorier, 1995b). The identi�
ation of the nature of these di�
ulties and theirasso
iation with the way in whi
h students 
onstru
t the 
on
ept of ve
tor spa
es is of great importan
e on theway to the development and implementation of good instru
tional strategies. APOS (A
tion-Pro
ess-Obje
t-S
hema) Theory provides a resear
h tool that has been su

essfully used in other areas of mathemati
s su
h asabstra
t algebra and 
al
ulus, for similar purposes. In a previous paper (Trigueros and Okta
, 2005) a possiblegeneti
 de
omposition for the 
on
ept of ve
tor spa
es was reported, and a
tivities that were designed in su
ha way that students 
an make the ne
essary mental 
onstru
tions required by the geneti
 de
omposition of the
on
ept were analyzed. Taking into a

ount this paper, an instrument to 
ondu
t a semi-stru
tured interviewwas designed using our theoreti
al framework, to be applied to a sele
ted group of students. The data fromthe interviews will be analyzed using the same framework. The interview 
onsisted of 17 questions about the
on
epts of ve
tor spa
e and subspa
e. Here we present two of these questions (numbered 1 and 2 in theinstrument), together with our a priori analysis of them and related student performan
e.Referen
es:Dorier, J-L. (1995a): A general outline of the genesis of ve
tor spa
e theory. Historia Mathemati
a, 22(3),227-261.Dorier, J-L. (1995b): Meta level in the tea
hing of unifying and generalizing 
on
epts in mathemati
s.Edu
ational Studies in Mathemati
s, 29(2), 175-197.Trigueros, M. and Okta
, A. (2005): La Théorie APOS et l'Enseignement de l'Algebre Lineaire. Annalesde Dida
tique et de S
ien
es Cognitives, vol. 10, 157-176.Verde-Star, Luis, UAM Iztapalapa, Méxi
o DF, Méxi
o[CT, Fri. 12:15, Room 4℄ Linear algebrai
 approa
h to rational fun
tionsWe 
onsider some basi
 linear algebrai
 aspe
ts of the algebra of rational fun
tions in one 
omplex variable. Wealso look at some duality properties and the Hopf algebra stru
ture, and show that there are other importantalgebras that are isomorphi
 to the rational fun
tions.Vieira, Luis, Feup, Porto, Portugal[CT, Mon. 18:35, Room 2℄Eu
lidean Jordan algebras and inequalities on the parameters and on the spe
tra of a stronglyregular graphLet τ be a strongly (n, p; a, c) regular graph, su
h that 0 < c < p < n− 1, A his matrix of adja
en
y and let
Vn be the Eu
lidean real spa
e spanned by the powers Aj , j ∈ N0 where the s
alar produ
t •|• is de�ned by
x|y = tra
e(x · y). In this exposition one proves that Vn is an Eu
lidean Jordan algebra of rank 3 when oneintrodu
es in Vn the usual produ
t of matri
es. Working inside the Eu
lidean Jordan algebra Vn with the theonly 
omplete system of orthogonal idempotents asso
iated to A one de�nes the generalized Krein parametersof the strongly (n, p; a, c) regular graph τ. Finally one presents ne
essary 
onditions over the parameters andthe spe
tra of the strongly (n, p; a, c) regular graph τ .
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Weaver, James, University of West Florida, Pensa
ola, FL 32514, USA[CT, Mon. 12:00, Room 4℄ Nonsingularity of Divisor TournamentsMatrix theoreti
 properties and examples of divisor tournaments are dis
ussed. Emphasis is pla
ed on resultsand 
onje
tures about the nonsingularity of the adja
en
y matrix for a divisor tournament.De�nition 1 For an integer n > 2, the divisor tournament D(Tn) ( a dire
ted graph on the verti
es 2, 3, . . . , n)is de�ned by: i is adja
ent to j if i divides j, otherwise j is adja
ent to i for 2 ≤ i < j ≤ n. No vertex isadja
ent to itself.De�nitioni 2 The adja
en
y matrix Tn of the dire
ted graph D(Tn) with vertex set {2, 3, . . . , n} is the (n −
1)× (n − 1) matrix [tij ] de�ned by tij = 1 and tji = 0 if i | j, tij = 0 and tji = 1 if i 6 | j for 2 ≤ i < j ≤ n.
tii = 0 for i ∈ {2, 3, . . . , n}.(with Rohan Hemasinha and Je�rey L. Stuart)Woj
ie
howski, Piotr, University of Texas at El Paso, El Paso, USA[CT, Fri. 16:45, Room 3℄Orderings of matrix algebras and their appli
ationsThe full matrix algebra Mn(F) over a totally-ordered sub�eld F of the reals be
omes a partially orderedalgebra by a partial order relation ≤ on the set Mn(F), if for any A,B,C ∈ Mn(F) from A ≤ B it followsthat:(1) A+ C ≤ B + C(2) if C ≥ 0 then AC ≤ BC and CA ≤ CB(3) if F ∋ α ≥ 0 then αA ≤ αB.Our interest is when the order ≤ is a latti
e or at least is dire
ted. Then we have a latti
e-ordered algebra ofmatri
es or a dire
tly-ordered algebra of matri
es. Those 
on
epts originate in 1956 in Birkho� and Pier
e in[1℄. The �rst example of a latti
e-ordered algebra of matri
es is, of 
ourse, with the usual entry-wise ordering.In this ordering the identity matrix I is positive. In 1966 E. Weinberg proved in [6℄ that the positivity of
I for
es a latti
e-ordering to be (isomorphi
 to) the usual one in M2(F) and 
onje
tured the same for all
n ≥ 2. The 
onje
ture was positively solved in 2002 by J. Ma and P. Woj
ie
howski in [4℄. The proofinvolved a 
one-theoreti
 approa
h, by �rst establishing existen
e of a P -invariant 
one O in F

n, i.e. satisfyingthe 
ondition that for every matrix M ∈ P , M(O) ⊆ O, where P is the positive 
one of the ordering ≤(P = {A ∈ Mn(F) : A ≥ 0}.) With help of 
ompa
tness of a unit sphere in R
n and the Zorn's Lemma, weobtained all the desired properties of the 
one O that led us to the 
on
lusion of the 
onje
ture.The �rst part of the talk will brie�y outline the method.The above 
onsiderations allowed us to 
omprehensively des
ribe all latti
e orders of Mn(F) (J. Ma andP. Woj
ie
howski [5℄): the algebra Mn(F) is latti
e-ordered (within an isomorphism) if and only if

A ≥ 0⇔ A =

n∑

i,j=1

αijEijH
Twith

αij ≥ 0

i, j = 1, . . . , n, for some given H nonsingular with nonnegative entries and Eij having 1 in the ij entry andzeros elsewhere.As a �rst appli
ation, we will des
ribe all multipli
ative bases in the matrix algebra Mn(F) and provide theirenumeration for small n (C. De La Mora and P. Woj
ie
howski 2006 [2℄.) In a �nite-dimensional algebra over76



a �eld F, a basis B is 
alled a multipli
ative basis provided that B ∪ {0} forms a semigroup. Although thesebases (endowed with some additional algebrai
 properties) have been studied in the representation theory,they la
ked a 
omprehensive 
lassi�
ation for matrix algebras. The �rst example of a multipli
ative basis of
Mn(F) should of 
ourse be {Eij , i, j = 1, . . . , n}. Every latti
e order on Mn(F) 
orresponds to a nonsingular
n× n matrix H with nonnegative entries. It turns out that if the entries are either 0 or 1, the basi
 matri
esresulting in the de�nition of the latti
e order, i.e. the matri
es EijH

T form a multipli
ative basis, and
onversely, every multipli
ative basis 
orresponds to a nonsingular zero-one matrix. After identi�
ation of theisomorphi
 semigroups and also identi�
ation of the matri
es that have just permuted rows and 
olumns, theabove 
orresponden
e is one-to-one. The number of zero-one nonsingular matri
es, although la
king a formulaso far, is known for a few small n values. This, together with the 
onjuga
y 
lass method from group theory,allowed us to 
al
ulate the number of nonequivalent multipli
ative bases up to dimension 5: 1, 2, 8, 61, 1153.Another appli
ation 
on
erns 
ertain dire
ted partial orders of matri
es that appear naturally in linear algebraand its appli
ations. It is related to the resear
h of matri
es preserving 
ones, established in the seventies,among others by R. Loewy and H. S
hneider in [3℄. Besides the latti
e orders (
orresponding to the simpli
ial
ones), the best studied ones are the orders whose positive 
ones are the sets Π(O), of all matri
es preservinga regular (or full) 
one O in an n-dimensional Eu
lidean spa
e. It 
an be shown that O is essentially theonly Π(O)-invariant 
one (P. Woj
ie
howski [7℄.) Consequently, we obtain a 
hara
terization of all maximaldire
ted partial orders on the n×n matrix algebra: a dire
ted order is maximal if and only if its positive 
one
P satis�es P = Π(O) for some regular 
one O. The method used in the proof involves a 
on
ept of simpli
ialseparation, allowing a regular 
one to be separated from an outside point by means of a simpli
ial 
one.Some open questions related to the dis
ussed topi
s will be raised during the talk.Referen
es[1℄ G. Birkho� and R.S. Pier
e, Latti
e-ordered rings, An. A
ad. Brasil. Ci. 28 (1956), 41-69.[2℄ C. de La Mora and P. Woj
ie
howski Multipli
ative bases in matrix algebras, Linear Algebra and Appli
a-tions 419 (2006) 287-298.[3℄ R. Loewy and H. S
hneider, Positive Operators on the n-dimensional I
e-Cream Cone, J. Math. Anal.Appl. 49 (1975)[4℄ J. Ma and P. Woj
ie
howski, A proof of Weinberg's 
onje
ture on latti
e-ordered matrix algebras, Pro.Amer. Math. So
., 130(2002), no. 10, 2845-2851.[5℄ J. Ma and P. Woj
ie
howski, Latti
e orders on matrix algebras, Algebra Univers. 47 (2002), 435-441.[6℄ E. C. Weinberg, On the s
ar
ity of latti
e-ordered matrix rings, Pa
i�
 J. Math. 19 (1966), 561-571.[7℄ P. Woj
ie
howski Dire
ted maximal partial orders of matri
es, Linear Algebra and Appli
ations 375(2003)45-49Wrobel, Iwona, Warsaw University of Te
hnology and Polish A
ademy of S
ien
es, Warsaw, Poland[CT, Thu. 10:35, Room 3℄The Gauss-Lu
as theorem and the numeri
al rangeThe Gauss-Lu
as theorem states that the 
onvex hull of the roots of a given 
omplex polynomial 
ontainsthe roots of its derivative. We will dis
uss possibilities of generalizing this result to the numeri
al range of
ompanion matri
es. 77



Wu, Pei Yuan, National Chiao Tung University, Hsin
hu, Taiwan[CT, Wed. 11:25, Room 4℄ Numeri
al ranges of nilpotent operatorsFor any operator A on a Hilbert spa
e, let w(A) and w0(A) denote its numeri
al radius and the distan
efrom the origin to the boundary of its numeri
al range, respe
tively. We prove that if A is nilpotent withnilpoten
y n, then w(A) is at most the produ
t of n− 1 and w0(A). When A attains its numeri
al radius, wealso determine a ne
essary and su�
ient 
ondition for the equality to hold.(with Hwa-Long Gau)Zandieh, Mi
helle, Arizona State University, Tempe, AZ, USA[MS4, Wed. 11:00, Room 2℄Design of a unit to tea
h eigenve
tors and eigenvalues based on the instru
tional designprin
iples of Realisti
 Mathemati
s Edu
ationAn understanding of eigen theory 
an provide students with powerful ways of analyzing and understandingsystemi
-level problems in many areas of mathemati
s, engineering, and s
ien
es.Most mathemati
s, engineering, and physi
s majors will en
ounter eigen theory at least twi
e in theirundergraduate 
areer: in linear algebra and in di�erential equations. Prior resear
h do
uments the manystruggles that students fa
e as they attempt to bridge their informal and intuitive ways of thinking withthe formalization of 
on
epts in linear algebra (Dorier, Robert, Robinet and Rogalski, 2000; Carlson, 1993).Contemporary theories of learning and advan
es in instru
tional design theory, however, o�er fresh ideas foraddressing these well-do
umented problems.The purpose of this paper is to report on one su
h resear
h-based approa
h to improve the learning andtea
hing of linear algebra. In parti
ular, this paper will arti
ulate a hypotheti
al learning traje
tory (HLT)for the development of eigen theory. This HLT will be grounded in analysis of data 
olle
ted from a semesterlong tea
hing experiment in linear algebra. As su
h, the HLT we des
ribe will be both retrospe
tive andprospe
tive. It will be retrospe
tive in the sense that the HLT is informed not only by the literature, but alsoby our ongoing work with learners. It is prospe
tive in the sense that what we learned from working withstudents informs revisions and 
hanges to our HLT. This, in turn, will be the basis for our next 
lassroomtea
hing experiment.We de�ne a HLT to be a storyline about tea
hing and learning that o

urs over an extended period oftime (
f, Simon, 1995). The storyline in
ludes four aspe
ts, all of whi
h are re�exively related and revisable:(1) Learning goals about student reasoning, (2) a storyline of how students' mathemati
al learning experien
ewill evolve, (3) the role of the tea
her in the storyline, and (4) a sequen
e of instru
tional tasks that studentswill engage in. In our view, a HLT 
an be a useful tool for resear
hers and instru
tional designers interestedin studying the evolution of student reasoning in 
lassroom settings.Our instru
tional design e�orts are informed in large part by the theory of Realisti
 Mathemati
s Edu
ation(RME), with parti
ular emphasis on the heuristi
s of guided reinvention and emergent models (Gravemeijer,1999). The heuristi
 of guided reinvention suggests means by whi
h tea
hers and instru
tional designers
an promote students' ability to develop the intended mathemati
s for themselves. The emphasis of guidedreinvention is on the 
hara
ter of the learning pro
ess, rather than on inventing as su
h. The heuristi
of emergent models 
an be thought of in terms of a global transition in whi
h students and the tea
herdevelop amodel-of their informal a
tivity whi
h gradually develops into amodel-for more formal mathemati
alreasoning. This global transition is a pro
ess by whi
h a new mathemati
al reality emerges, grounded ininformal and situation-spe
i�
 a
tivity (Zandieh & Rasmussen, 2008).For example, in our tea
hing experiment we found that students 
ould essentially reinvent the determinantas a way of measuring the area of the image of the unit square under multipli
ation by an arbitrary 2x2 matrix.More importantly, and related to the notion of emergent models, the relationship between the 
olumn ve
torsof a matrix and the determinant of this matrix has the potential to be
ome a powerful reasoning tool.78



Figure 1: A student shows how he found the area.Figure 1 gives one student's work on a task that asked them to �nd an expression for the area of the imageof the unit square when multiplied by the matrix (
a b
c d

).After �nding this area, students were then asked to make predi
tions about the area of the image of aunit square when multiplied by a 2x2 matrix whose 
olumn ve
tors were linearly dependent. This helpedstudents to develop a visual intuition for the relationship between the determinant of a matrix and the linear(in)dependen
e of the 
olumn ve
tors that make up the matrix. Nearly a month after this introdu
tion todeterminants, one student, who we will 
all Karl, explained his thinking about how this idea 
onne
ts to eigentheory:When you look at the, uh, ve
tors, what does the determinant give us? It gives us the area between anytwo given ve
tors. And if, if our determinant equals zero, that basi
ally means that the ve
tors that we'resolving for have no area in between. So therefore they lie along the same line.As he spoke, Karl held his hands in a v-shape, presumably emulating two ve
tors pointing out from theorigin. When he made referen
e to the determinant being zero, he made a motion of �attening his handstogether to indi
ate that the two ve
tors now lie along the same line.This type of reasoning has inspired us to reframe the development of the eigen unit. In parti
ular, we
onje
ture that it might be more intuitive for students to �rst think about the pro
ess of �nding eigenve
tors,as opposed to eigenvalues. This �eigenve
tor �rst� approa
h goes along with the goal to �nd those ve
torswhose image lies along the same line as the original ve
tor � and these ve
tors 
an be found by for
ing thedeterminant to be zero. Su
h an eigenve
tor �rst approa
h has also been do
umented to be more 
on
eptuallya

essible to student in di�erential equations (Rasmussen & Blumenfeld, 2007). Our full paper will detail thefour 
omponents (Learning goals about student reasoning, a storyline of how students' mathemati
al learningexperien
e will evolve, the role of the tea
her in the storyline, and a sequen
e of instru
tional tasks) for ournew HLT for this innovative �eigenve
tor �rst� approa
h.Referen
esCarlson, D. (1993). Tea
hing linear algebra: Must the fog always roll in? The College Mathemati
alJournal, 24(1), 29-40.Dorier, J.L., Robers, A., Robinet, J., & Rogalski, M. (2000). The obsta
les of formalism in linear algebra.In J.L. Dorier (Ed.), On the tea
hing of linear algebra (pp. 85-124). Dordre
ht: Kluwer.Gravemeijer, K. (1999). How emergent models may foster the 
onstitution of formal mathemati
s. Math-emati
al Thinking and Learning, 1, 155-177.Rasmussen, C., & Blumenfeld, H. (2007). Reinventing solutions to systems of linear di�erential equations:A 
ase of emergent models involving analyti
 expressions. Journal of Mathemati
al Behavior, 26, 195-210.79



Simon, M.A. (1995). Re
onstru
tion mathemati
s pedagogy from a 
onstru
tivist perspe
tive. Journal forResear
h in Mathemati
s Edu
ation, 26, 114-145.Zandieh, M. & Rasmussen, C. (2008). A 
ase study of de�ning: 
reating a new mathemati
al reality.Manus
ript submitted for publi
ation.(with Rasmussen, C. and Larson, C.)Zimmermann, Karel, Fa
ulty of Mathemati
s and Physi
s, Charles University, Prague, Cze
h Republi
[MS7, Mon. 12:00, Room 2℄Solving two-sided (max,plus)-linear equation systemsSystems of equations of the following form will be 
onsidered:
ai(x) = bi(x) i ∈ I, (21)where I = {1, . . . ,m}, J = {1, . . . ,m},

ai(x) = maxj∈J (aij + xj), bi(x) = maxj∈J (bij + xj) ∀i ∈ Iand aij , bij are given real numbers.The aim of the 
ontribution is to propose a polynomial method for solving system (21). Let M be the set ofall solutions of (21), let M(x) denote the set of solutions of system (21) satisfying the additional 
onstraint
x ≤ x, where x is a given �xed element of Rn. The proposed method either �nds the maximum element ofthe set M(x) (i.e. element x̂ ∈ M(x), for whi
h x ∈ M(x) implies x ≤ x̂), or �nds out that M(x) = ∅. Theresults are based on the following properties of system (21) (to simplify the notations we will assume in thesequel w.l.o.g. that ai(x) ≥ bi(x) ∀ i ∈ I and x 6∈M(x)):(i) M(x) = ∅ ⇒M = ∅.(ii) Let Ki = {k ∈ J ; aik ≤ bik} ∀i ∈ I. If for some i0 ∈ I the set Ki0 = ∅, then M(x) = ∅.(iii) Let βi(x) = maxk∈Ki

(bik + xk), Li(x) = {j ∈ J ; aij + xj > βi(x)}, ∀ i ∈ I. If ⋃
i∈I Li(x) = J , then

M(x) = ∅.(iv) Let Vj(x) = {i ∈ I; j ∈ Li(x)}, let x(1)
j = mini∈Vj(x)(βi(x) − aij) for all j ∈ J , for whi
h Vj(x) 6= ∅ and

x
(1)
j = xj otherwise. Let βi(x

(1)) < βi(x) for all i ∈ I. Then for at least one i ∈ I the value βi(x
(1)) is equalto at least one of the threshold values bij + xj < βi(x).The method su

essively determines variables, whi
h have to be de
reased if equalities in (21) should berea
hed. If all variables have to be set in movement, no solution of (21) exists. If the set of un
hanged vari-ables is nonempty, the maximum element of (21) is obtained. Using these properties a polynomial behaviorof the proposed method 
an be proved (in 
ase of rational or integer inputs). Possibilities of further general-izations and usage in optimization with 
onstraints (21), as well as appli
ations to syn
hronization problemswill be brie�y dis
ussed.Zúñiga, Juan Carlos, Department of Mathemati
s, University of Calgary, Calgary, Alberta, Canada[MS6, Tue. 18:10, Room 2℄Matrix polynomials, rational matri
es and linear systems: A reviewS
alar and matrix fun
tions whose entries are polynomial or rational fun
tions are essential tools of mathe-mati
s and its appli
ations, and parti
ularly of systems theory. It 
an be argued that two s
hools of thoughthave emerged, in applied linear algebra and in systems theory, whi
h are 
on
erned with the same problems,but have developed independent literatures. In this note, we review basi
 ideas whi
h are 
ommon to boths
hools and, thereby, 
larify 
onne
tions and fa
ilitate 
ommuni
ation between them. Our interest fo
uses80



parti
ularly on the study of eigenvalues, poles, and zeros of polynomial and rational matrix fun
tions asmathemati
al models of multivariable linear di�erential (dynami
al) systems. It is not our intention to give adeep analysis on di�erential (dynami
al) systems, we fo
us only in the di�erent ways that matrix polynomialsand rational matri
es are used to model linear systems. We also argue on the importan
e of the stru
turalproperties of these matrix fun
tions when des
ribing the dynami
s of the modeled system. Then we presentdi�erent methods to obtain these stru
tural properties, and their relations with the methods used in appliedlinear algebra and matrix theory, in parti
ular, 
anoni
al forms and linearizations. Finally a brief dis
ussionon numeri
al methods to obtain stru
tural properties of matrix fun
tions is presented.(with Lan
aster, Peter)
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