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AbstratsAhn, Eunkyung, Kyungpook National University, Daegu, Korea[CT, Thu. 17:45, Room 4℄An extended Lie-Trotter formula and its appliationsIn this talk we present a lass of Lie-Trotter formulae for Hermitian operators inluding the formulae derivedby Hiai-Petz and Furuta. A Lie-Trotter formula for weighted Log-Eulidean geometri means of several positivede�nite operators is given in terms of Sagae-Tanabe geometri and spetral geometri means.(with Sejong Kim and Yongdo Lim)Al Zhour, Zeyad, Zarqa Private University, Zarqa, Jordan[CT, Thu. 11:25, Room 5℄Matrix Results on Weighted Drazin Inverse and Some AppliationsIn this paper, we present two general representations of the weighted Drazin inverse Ad,W of an arbitraryretangular matrix A ∈ Mm,n related to Moore-Penrose Inverse (MPI) and Kroneker produt of matries.These generalizations extend earlier results on the Drazin inverse Ad, group inverse Ag and usual inverse A−1.Furthermore, some neessary and su�ient onditions for Drazin and weighted Drazin inverses are given forthe reverse order law (AB)d = BdAd and (AB)d,Z = Bd,RAd,W to hold. Finally, we present the solution ofthe restrited singular matrix equations using our new approahes.(with Adem Kiliman)Andjeli, Milia, Center for Researh on Optimization and Control, Aveiro, Portugal[CT, Fri. 10:35, Room 3℄One upper bound for the largest eigenvalue of the signless LaplaianWe prove several onjetures whih were generated using the omputer program AutoGraphiX (AGX). Newbound on the largest eigenvalue of signless Laplaian is given. Moreover, the study of this bound together withsome other already known yields to many examples where the new one gives more preise approximations.(with Slobodan Simi)Arav, Marina, Georgia State University, Atlanta, GA, USA[CT, Tue. 10:35, Room 3℄Sign Patterns That Require Almost Unique RankA sign pattern matrix is a matrix whose entries are from the set {+,−, 0}. For a real matrix B, sgn(B)is the sign pattern matrix obtained by replaing eah positive (respetively, negative, zero) entry of B by
+ (respetively, −, 0). For a sign pattern matrix A, the sign pattern lass of A, denoted Q(A), is de�nedas {B : sgn(B) = A }. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A isthe minimum (maximum) of the ranks of the real matries in Q(A). Several results onerning sign patterns
A that require almost unique rank, that is to say, the sign patterns A suh that MR(A) = mr(A) + 1 areestablished. In partiular, a omplete haraterization of these sign patterns is obtained. Further, the resultson sign patterns that require almost unique rank are extended to sign patterns A for whih the spread is
d = MR(A)−mr(A).(with Frank Hall, Zhongshan Li, Assefa Merid, Yubin Gao)3



Ariò, Antonio, Dipartimento di Matematia - Universitá di Cagliari, Cagliari, Italy[MS3, Fri. 11:00, Room 2℄Signal and Image regularization via antire�etive transformThe aim of this talk is to show an e�ient approah for omputing a regularized solution via �ltering methods,applied to the spetral deomposition of anti-re�etive matries. Filtering methods are used in signal and imagerestoration to reonstrut an approximation of a signal or image from degraded measurements. Filteringmethods rely on omputing a singular value deomposition or a spetral fatorization of a large struturedmatrix. The struture of the matrix depends in part on imposed boundary onditions. Antire�etive boundaryonditions preserve ontinuity of the image and its derivative at the boundary, and have been shown to produesuperior reonstrutions ompared to other ommonly used boundary onditions, suh as periodi, zero andre�etive. The purpose of my talk is to analyze the eigenvetor struture of matries that enfore antire�etiveboundary onditions, and the related anti-re�etive transform. An e�ient approah to omputing �lteredsolutions is proposed, and numerial tests are shown to illustrate the performane of the disussed methods.Bardsley, John, University of Montana, Missoula, Montana, USA[MS3, Thu. 17:20, Room 2℄Trunation Rules for Iterative Deblurring MethodsImage data is often olleted by a harge oupled devie (CCD) amera. CCD amera noise is known tobe well-modeled by a Poisson distribution. If this is taken into aount, the negative-log of the Poissonlikelihood is the resulting data-�delity funtion. We derive, via a Taylor series argument, a weighted leastsquares approximation of the negative-log of the Poisson likelihood funtion. The image deblurring algorithmof interest is then applied to the problem of minimizing this weighted least squares funtion subjet to anonnegativity onstraint. Our objetive in this paper is the development of stopping rules for this algorithm.We present three stopping rules and then test them on data generated using two di�erent true images and anaurate CCD amera noise model. The results indiate that eah of the three stopping rules is e�etive.Barrett, Wayne, Brigham Young University, Provo, Utah[MS1, Thu. 10:35, Room 1℄Minimum rank of edge subdivisions of omplete graphs and wheelsThe minimum rank problem for a simple, undireted graph G is to determine the minimum rank (or maximumnullity) over all symmetri matries whose o�-diagonal nonzero pattern orresponds to G. For eah positiveinteger n greater than three, let Kn be the omplete graph on n verties and let Wn be the wheel on nverties. Given any graph G, an hG is any graph that an be obtained from G by subdividing edges; G itselfis onsidered to be an hG. We give a general method for �nding the minimum rank of any hKn or hWn. Foreah �xed Kn (Wn), the problem redues to identifying among all hKn (hWn) a �nite olletion of ritialgraphs; we exhibit these expliitly for small values of n. For eah of these we give a sharp upper bound on itsminimum rank by onstruting a symmetri matrix of minimum rank with the orret zero/nonzero pattern,and a sharp upper bound on the maximum nullity by means of a minimal zero foring set. The simplest resultof this type is as follows. Let K∗
4 be the graph on 10 verties obtained by subdividing eah edge of K4 one,and let G be an hK4. Then

M(G) =

{
3 if G is not an hK∗

4

4 if G is an hK∗
4 .where M(G) is the maximum nullity of G. All of our results are �eld independent.(with Ryan Bowutt, Mark Cutler, Seth Gibelyou, and Kayla Owens)4



Barría, José, Santa Clara University, Santa Clara, U.S.A.[CT, Fri. 16:20, Room 4℄The strong losure of the similarity orbit for a lass of pairs of �nite rank operatorsFor operators A and B on a Hilbert spae H the similarity orbit S(A,B) is the set of all pairs of the form
(W−1AW,W−1BW ), whereW is an invertible operator onH. We desribe the losure of S(A,B) in the strongoperator topology, for �nite rank operators A and B whose ranges have intersetion equal to the subspae {0}.Baur, Ulrike, Chemnitz University of Tehnology, Chemnitz, Germany[MS5, Fri. 15:30, Room 2℄Model Redution for unstable Systems based on Hierarhial Matrix ArithmetiWe onsider linear time-invariant (LTI) systems of the following form

Σ :

{
ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0,with A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

p×n arising, e.g., from the disretization and linearization of paraboliPDEs. We will assume that the system Σ is large-sale with nThu.18 : 35m, p and that the system is unstable,satisfying
Λ(A) ∩C

+ 6= ∅, Λ(A) ∩ R = ∅.We further allow the system matrix A to be dense, provided that a data-sparse representation exists. Toredue the dimension of the system Σ, we apply an approah based on the ontrollability and observabilityGramians of Σ. The numerial solution of these Gramians is obtained by solving two algebrai Bernoulli andtwo Lyapunov equations. As standard methods for the solution of matrix equations are of limited use forlarge-sale systems, we investigate approahes based on the matrix sign funtion method. To make this iter-ative method appliable in the large-sale setting, we inorporate strutural information from the underlyingPDE model into the approah. By using data-sparse matrix approximations, hierarhial matrix formats, andthe orresponding formatted arithmeti we obtain an e�ient solver having linear-polylogarithmi omplex-ity. One the Gramians are omputed, a redued-order system an be obtained applying the usual balanedtrunation method.Beattie, Christopher, Virginia Teh, Blaksburg, VA, USA[MS5, Thu. 11:25, Room 2℄Interpolatory Projetion Methods for Parameterized Model RedutionDynamial systems are the basi framework for modeling and ontrol of an enormous variety of omplexsystems. Diret numerial simulation of the assoiated models has been one of the few means available whengoals inlude aurate predition or ontrol of omplex physial phenomena. However, the ever inreasingneed for improved auray requires the inlusion of ever more detail in the modeling stage, leading inevitablyto ever larger-sale, ever more omplex dynamial systems Complex systems invariably are parameterized byquantities that will desribe partiular instanes of systems of interest. Simulations in suh large-sale settingsoften must be performed with a variety of di�erent parameter values and these tasks an make unmanageablylarge demands on omputational resoures; this is the main motivation for model redution, whih has asits goal prodution of a muh lower dimensional system having the same input/output harateristis as theoriginal system. Rational Krylov subspaes are often apable of providing nearly optimal approximatingsubspaes for model redution. A framework for model redution is presented that inludes rational Krylov-based methods as a speial ase. This broader framework allows retention of speial struture in the reduedorder models that is often enoded in the system parameterization suh as symmetry, seond order struture,internal delays, and in�nite dimensional subsystems. 5



Bella, Tom, University of Connetiut, Storrs, USA[MS2, Fri. 11:00, Room 1℄ Eigenproblems for quasiseparable matriesWe onsider eigenproblems for the lass of quasiseparable matries, or matries whose o��diagonal bloks arelow rank. Classial eigenvalue algorithms, suh as QR iterations and divide and onquer, make use of thisvery property of quasiseparability. We additionally give lassi�ations of Hessenberg�quasiseparable matriesin terms of the reurrene relations of related systems of polynomials.(with Yuli Eidelman, Israel Gohberg and Vadim Olshevsky)Bengohea, Gabriel, Universidad Autónoma de la Ciudad de Méxio, Méxio D.F.[CT, Fri. 11:00, Room 4℄Duality in the Hopf Algebra of multivariate polynomialsThe C-vetor spae of polynomials in one variable with omplex oe�ients, whih owns a Hopf algebrastruture, has a dual spae generated by the one variable Taylor's funtionals. In the ase of two variables,we an observe that the dual spae is generated by the Taylor's funtionals in one variable applied to eahvariable separately. With this theory we an alulate residues from polynomials of separable variables. Thistheory an be easily extended to the ase of n-variables. There are other theories that develop the residuealulus using Gorenstein algebra.(with L. Verde-Star)Benner, Peter, TU Chemnitz, Fakultät für Mathematik, Chemnitz, Germany[MS5, Fri. 16:20, Room 2℄Balaning-Related Model Redution for Large-Sale Unstable SystemsModel redution is an inreasingly important tool in analysis and simulation of dynamial systems, ontroldesign, iruit simulation, strutural dynamis, CFD, et. In the past deades many approahes have beendeveloped for reduing the order of a given model. Here, we will fous on balaning-related model redutiontehniques that have been developed sine the early 80ies in ontrol theory. The mostly used tehnique ofbalaned trunation (BT) [3℄ applies to stable systems only. But there exist several related tehniques thatan be applied to unstable systems as well. We are interested in tehniques that an be extended to large-salesystems with sparse system matries whih arise, e.g., in the ontext of ontrol problems for instationarypartial di�erential equations (PDEs). Semi-disretization of suh problems leads to linear, time-invariant(LTI) systems of the form
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn. Here, n is the order of the system and
x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm are the state, output and input of the system, respetively. We assume Ato be large and sparse and nThu.18 : 35m, p. Applying the Laplae transform to (1) (assuming x(0) = 0), weobtain

Y (s) = (C(sI −A)−1B +D)U(s) =: G(s)U(s),where s is the Laplae variable, Y, U are the Laplae transforms of y, u, and G is alled the transfer funtionmatrix (TFM) of (1). The TFM desribes the input-output mapping of the system. The model redutionproblem onsists of �nding a redued-order LTI system,
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2)6



of order r, r ≪ n, with the same number of inputs m, the same number of outputs p, and assoiated TFM
Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂, so that for the same input funtion u ∈ L2(0,∞; Rm), we have y(t) ≈ ŷ(t) whihan be ahieved if G ≈ Ĝ in an appropriate measure. If all eigenvalues of A are ontained in the left halfomplex plane, i.e., [1) is stable, BT is a viable model redution tehnique. It is based on balaning theontrollability and observability Gramians Wc, Wo of the system (1) given as the solutions of the Lyapunovequations

AWc +WcA
T +BBT = 0, ATWo +WoA+ CTC = 0. (3)Based on Wc,Wo or Cholesky fators thereof, matries V,W ∈ Rn×r an be omputed so that with

Â := WTAV, B̂ := WTB, Ĉ := CV, D̂ = D,the redued-order TFM satis�es
σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2

n∑

k=r+1

σk, (4)where σ1 ≥ . . . ≥ σn ≥ 0 are the Hankel singular values of the system, given as the square roots of theeigenvalues of WcWo. The key omputational step in BT is the solution of the Lyapunov equations (3). Inreent years, a lot of e�ort has been devoted to the solution of these Lyapunov equations in the large andsparse ase onsidered here. Nowadays, BT an be applied to systems of order up to n = 106, see, e.g., [1, 2℄.Less attention has been payed so far to unstable systems, i.e., systems where A may have eigenvalues withnonnegative real part. Suh systems arise, e.g., from semi-disretizing paraboli PDEs with unstable reativeterms. We will review methods related to BT that an be applied in this situation and disuss how thesemethods an also be implemented in order to beome appliable to large-sale problems. The basi idea ofthese methods is to replae the Gramians Wc and Wo from (3) by other positive semide�nite matries thatare assoiated to (1) and to employ the algorithmi advanes for BT also in the resulting model redutionalgorithms.Referenes[1℄ P. Benner, V. Mehrmann, and D. Sorensen, editors. Dimension Redution of Large-Sale Systems, vol-ume 45 of Leture Notes in Computational Siene and Engineering. Springer-Verlag, Berlin/Heidelberg,Germany, 2005.[2℄ J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl., 24(1):260�280, 2002.[3℄ B. C. Moore. Prinipal omponent analysis in linear systems: Controllability, observability, and modelredution. IEEE Trans. Automat. Control, AC-26:17�32, 1981.Berman, Avi, Tehnion, Haifa, Israel[MS1, Wed. 12:15, Room 1℄The Colin de Verdière Parameter- a progress report***
7



Bini, Dario, Dipartimento di Matematia, Universitá di Pisa, Pisa, Italy[MS6, Tue. 10:35, Room 1℄Fast solution of a ertain Riati Equation through Cauhy-like matriesWe onsider a speial instane of the algebrai Riati equation XCX − XE − AX + B = 0 enounteredin transport theory, where the n × n matrix oe�ients A,B,C,E are rank strutured matries. We presentsome quadratially onvergent iterations for solving this matrix equation based on Newton's method, CyliRedution and the Struture-preserving Doubling Algorithm. It is shown that the intermediate matriesgenerated by these iterations are Cauhy-like with respet to a suitable singular operator and their displaementstruture is expliitly determined. Using the GKO algorithm enables us to perform eah iteration step in O(n2)arithmeti operations. In ritial ases where onvergene turns to linear, we present an adaptation of the shifttehnique whih allows to get rid of the singularity. Numerial experiments and omparisons whih on�rmthe e�etiveness of the new approah are reported.(with Beatrie Meini and Federio Poloni)Boetther, Albreht, TU Chemnitz, Chemnitz, Germany[Plenary, Mon. 15:30�16:25℄Toeplitz matries with Fisher-Hartwig symbolsAsymptoti properties of large Toeplitz matries are best understood if the matrix is onstituted by the Fourieroe�ients of a smooth funtion without zeros on the unit irle and with winding number zero. If at least oneof these onditions on the generating funtion is violated, one speaks of Toeplitz matries with Fisher-Hartwigsymbols. The talk is intended as an introdution to the realm of Toeplitz matries with Fisher-Hartwig symbolsfor a broad audiene. We show that several highly interesting and therefore very popular Toeplitz matriesare just matries with a Fisher-Hartwig symbol and that many questions on general Toeplitz matries, forexample, the asymptotis of the extremal eigenvalues, are nothing but spei� problems for matries withFisher-Hartwig symbols. We embark on both lassial and reent results onerning the asymptoti behaviorof determinants, ondition numbers, eigenvalues, and eigenvetors as the matrix dimension goes to in�nity.Boimond, Jean-Louis, LISA - University of Angers, Angers, Frane[MS7, Tue. 16:55, Room 3℄On Steady State Controller in Min-Plus AlgebraSynhronization phenomena ourring in systems where dynami behavior is represented by a �ow of �uidare well modeled by ontinuous (min,+)-linear systems. A feedbak ontroller design method is proposedfor suh systems in order that the system output asymptotially behaves like polynomial input. Suh aontroller objetive is well-known in the onventional linear systems theory. Indeed, the steady-state aurayof onventional linear systems is lassi�ed aording to their �nal responses to polynomial inputs suh as steps,ramps, and parabolas. The ability of the system to asymptotially trak polynomial inputs is given by thehighest degree, k, of the polynomial for whih the error between system output and referene input is �nitebut nonzero. We all the system type k to identify this polynomial degree. For example, a type 1 system has�nite, nonzero error to a �rst-degree polynomial input (ramp).An analogous de�nition of system type k is given for ontinuous (min,+)-linear systems and leads to simpleonditions as in onventional system theory. In addition to the onditions that the resulting ontroller mustsatisfy, we look for the greatest ontroller to satisfy the just in time riterion. For a manufaturing system, suhan objetive allows the releasing of raw parts at the latest dates suh that the ustomer demand is satis�ed.(with S. Lahaye) 8



Bourgeois, Gerald, Faulté de Luminy, Marseille, Frane[CT, Mon. 17:20, Room 4℄About the logarithm funtion over the matriesWe prove the following results: let x, y be (n, n) omplex matries suh that x, y, xy have no eigenvalue in
]−∞, 0] and log(xy) = log(x)+ log(y). If n = 2, or if n ≥ 3 and x, y are simultaneously triangularizable, then
x, y ommute. In both ases we redue the problem to a result in omplex analysis.Introdution Z∗ refers to the non-zero integers.Let u be a omplex number. Then Re(u), Im(u) refer to the real and imaginary parts of u; if u /∈] −∞, 0]then arg(u) ∈]− π, π[ refers to its prinipal argument.Basi fats about the logarithm. Let x be a omplex (n, n) matrix whih hasn't any eigenvalue in ]−∞, 0].Then log(x), the x-prinipal logarithm, is the (n, n) matrix a suh that:
ea = x and the eigenvalues of a lie in the strip {z ∈ C : Im(z) ∈]− π, π[}.
log(x) always exists and is unique; moreover log(x) may be written as a polynomial in x.Now we onsider two matries x, y whih have no eigenvalue in ]−∞, 0]:
• If x, y ommute then x, y are simultaneously triangularizable and we may assoiate pairwise their eigenvalues
(λj), (µj); if moreover ∀j, |arg(λj) + arg(µj)| < π, then log(xy) = log(x) + log(y).
• Conversely if xy has no eigenvalue in ] −∞, 0] and log(xy) = log(x) + log(y) then do x, y ommute ? Wewill prove that it's true for n = 2 (theorem 1) or, for all n, if x, y are simultaneously triangularizable (theorem2). But if n > 2, then we don't know the answer in the general ase.Dimension 2 Priniple of the proof. The proof is based on the two next propositions. The �rst one is aorollary of a Morinaga and Nono's result; the seond is a tehnial result using omplex analysis.Proposition 1. Let U = {u ∈ C∗ : eu = 1 + u}.Let a, b be two (2, 2) omplex matries suh that ea+b = eaeb and ab 6= ba; let spectrum(a) = {λ1, λ2}, spectrum(b) =
{µ1, µ2}.Then one of the three following item is ful�lled:(1) λ1 − λ2 ∈ 2iπZ

∗ and µ1 − µ2 ∈ 2iπZ
∗.(2) One of the following omplex numbers ±(λ1 − λ2), ±(µ1 − µ2) is in U .(3) a and b are simultaneously similar to (

λ 0
0 λ+ u

) and (
µ+ v 1

0 µ

) with λ, µ ∈ C, u, v ∈ C∗, u 6= v and
eu − 1

u
=
ev − 1

v
6= 0.Proposition 2. Let u, v be two distint, non zero omplex numbers suh that eu − 1

u
=

ev − 1

v
6= 0,

|Im(u)| < 2π, |Im(v)| < 2π.Then neessarily |Im(u)− Im(v)| ≥ 2π.Theorem 1. Let x, y be two (2, 2) omplex matries suh that x, y, xy haven't any eigenvalue in ]−∞, 0] and
log(xy) = log(x) + log(y). Then x, y ommute.Dimension n I refers to the identity matrix of dimension n− 1. Let φ be the holomorphi funtion: φ : z →
ez − 1

z
, φ(0) = 1.We'll use the following to prove our seond main result.Proposition 3. Let a =

(
a0 u
0 α

)
, b =

(
b0 v
0 β

) be two omplex (n, n) matries where α, β are om-plex numbers and a0, b0 are (n − 1, n − 1) omplex matries whih ommute; let spectrum(a0 − αI) =
(αi)i≤n−1, spectrum(b0 − βI) = (βi)i≤n−1. If ea+b = eaeb and ab 6= ba then one of the following itemmust be satis�ed:(4) ∃i : βi 6= 0 and φ(αi + βi) = φ(αi).(5) ∃i : αi 6= 0, βi = 0 and φ(−αi) = 1.Theorem 2. Let x, y be (n, n) omplex matries suh that x, y, xy haven't any eigenvalue in ] −∞, 0] and
log(xy) = log(x) + log(y). If moreover x, y are simultaneously triangularizable then xy = yx.9



Conlusion When n = 2, we know how to haraterize the omplex (n, n) matries a, b suh that ab 6= baand ea+b = eaeb; it allowed us to bring bak our problem to a result of omplex analysis. Unfortunately, if
n ≥ 3, the lassi�ation of suh matries is unknown. For this reason we an't prove, in this last ase, thehoped result without supplementary assumption.Brualdi, Rihard A., University of Wisonsin - Madison, Madison, USA[MS1, Wed. 10:35, Room 1℄A Conjeture in Combinatorial Matrix TheoryIn this talk I will disuss an old onjeture of mine and Bolian Liu, and the reent progress on this onjeture.Bru, Rafael, Univ. Politénia, Valenia, Spain[CT, Mon. 18:10, Room 3℄ On some lasses of H-matriesThis talk deals with some lasses of H-matries whih are sublasses of the type of invertible H-matries, thatis H-matries with invertible omparison matrix. In partiular new haraterization of S-SDD matries and
α-matries are given. Properties of those lasses of H-matries and Doubly Diagonally Dominant matries areonsidered.(with Ljiljana Cvetkovi¢, Vladimir Kosti¢ and Franiso Pedrohe)Bueno Cahadina, María Isabel, The University of California at Santa Barbara, Santa Barbara, USA[CT, Tue. 17:20, Room 4℄Algorithms for omputing the Geronimus TransformationA moni Jaobi matrix is a tridiagonal matrix whih ontains the parameters of the three-term reurrenerelation satis�ed by the sequene of moni polynomials orthogonal with respet to a measure. The basiGeronimus transformation with shift α transforms the moni Jaobi matrix assoiated with a measure dµ intothe moni Jaobi matrix assoiated with dµ/(x − α) + Cδ(x − α), for some onstant C. This transforma-tion is known for its numerous appliations to quantum mehanis, bispetral transformation in orthogonalpolynomials, integrable systems, and other areas of mathematis and mathematial physis. In this talk weexamine the algorithms available to ompute this transformation and we propose a new algorithm, whih ismore aurate than the other algorithms when C 6= 0. We also estimate its forward errors by omputing theondition number of the problem. We will �nally analyze the partiular ase when C = 0.Butkovi, Peter, University of Birmingham, Birmingham, United Kingdom[MS7, Tue. 18:10, Room 3℄On the permuted max-algebrai eigenvetor problemLet a ⊕ b = max(a, b), a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞} and extend these operations to matriesand vetors as in onventional linear algebra. The following max-algebrai eigenvetor problem has beenintensively studied in the past: Given A ∈ R

n×n
, �nd all x ∈ R

n
, x 6= (−∞, ...,−∞)T ( eigenvetors) suh that

A⊗ x = λ⊗ x for some λ ∈ R. In our talk we deal with the permuted eigenvetor problem: Given A ∈ R
n×nand x ∈ R

n
, is it possible to permute the omponents of x so that the arising vetor x′ is a (max-algebrai)eigenvetor of A? This problem an be proved to be NP -omplete using a polynomial transformation fromBANDWIDTH. As a by-produt the following permuted max-linear system problem an also be shown NP-omplete: Given A ∈ R

m×n and b ∈ R
m
, is it possible to permute the omponents of b so that for the arisingvetor b′ the system A⊗ x = b′ has a solution? Both problems an be solved in polynomial time when n doesnot exeed 3. 10



Carriegos, Miguel, Universidad de León, León, Spain[CT, Tue. 11:50, Room 4℄ Reahability of regular swithed linear systemsSwithed linear systems belong to a speial lass of hybrid ontrol systems whih omprises a olletion ofsubsystems desribed by linear dynamis (di�erential/di�erene equations) together with a swithing rule thatspei�es the swithing between the subsystems. Suh systems an be used to desribe a wide range of physialand engineering problems in pratie. On the other hand, swithed linear systems have been attrating muhattention in the reent past years beause of the arising problems are not only aademially hallenging but alsoof pratial importane. In this talk we onsider regular swithed sequential linear systems ; that is, sequentialswithed linear systems
Γ : x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t)where the swithing signals σ(0)σ(1)σ(2)... ∈ Σ∗ belong to a regular language LΓ ⊆ Σ∗ of admissible sequenesof ommands of system Γ. This is atually equivalent to saying that swithing signals are governed by a �niteautomaton. We study the notion of reahability in terms of families of matries Aσ(−) and Bσ(−) by usinglinear algebra tehniques.Castro-González, Nieves, Universidad Politénia de Madrid, Madrid, Spain[CT, Fri. 11:25, Room 4℄Representations for the generalized Drazin inverse of additive perturbationsLet B be a unital omplex Banah algebra. An element a ∈ B is said to have a generalized Drazin inverse ifthere exists x ∈ B suh that

xa = ax, x = ax2, a− a2x is quasinilpotent.In this ase, the generalized Drazin inverse of a is unique and is denoted by aD. If in the previous de�nition
a − a2x is in fat nilpotent then aD is the onventional Drazin inverse of a. It is well known that if a and
b have generalized Drazin inverse and ab = ba = 0, then (a + b)D = aD + bD. This result was generalizedin [Djordjevi¢ and Wei, Additive result for the generalized Drazin inverse, J. Austral. Math. So. 73 (2002)115-125℄ under the one side ondition ab = 0. Reently, in [Castro and Koliha, New Additive results for the
g-Drazin inverse, Pro. Roy. So. Edinburgh Set. A 134 (2005) 657-666℄, [Cvetkovi¢-Ili¢ et al., Additiveresults for the generalized Drazin inverse in a Banah algebra, Linear Algebra Appl. 418 (2006) 53-61℄, weakeronditions were given under whih (a+ b)D ould be expliitly expressed in terms of a, aD, b, and bD.In this paper we study the generalized Drazin inverse of the sum a + b, where the perturbation b is aquasinilpotent element, and we obtain a representation for (a + b)D under new onditions whih relax theondition ab = 0. Our approah is based on a representation for the resolvent of a 2× 2 matrix with entries ina Banah algebra, whih we provide, and the Laurent expansion of the resolvent in terms of the generalizedDrazin inverse. Our results an be applied to obtain di�erent representations of the generalized Drazin inverseof blok matries M =

(
A C
B D

), under ertain onditions, in terms of the individual bloks. In partiular,we an write M as the sum of a blok triangular matrix and a nilpotent matrix and apply the additiveperturbation result given to obtain a representation for MD. It extends the result of Meyer and Rose for theDrazin inverse of a blok triangular matrix. Finally, we present a numerial example for the Drazin inverse of
2× 2 blok matries over the omplex numbers.This researh is partly supported by Projet MTM2007-67232, �Ministerio de Eduaión y Cienia" of Spain.(with M. F. Martínez-Serrano)
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Catral, Minerva, University of Vitoria, Vitoria, Canada[MS8, Mon. 18:35, Room 1℄The Kemeny Constant in Finite Homogeneous Ergodi Markov ChainsFor a �nite homogeneous ergodi Markov hain, the Kemeny onstant is an interesting quantity whih isde�ned in terms of the mean �rst passage times and the stationary distribution vetor. A formula in terms ofgroup inverses and inverses of assoiated M-matries is presented and perturbation results are derived.Cheng, Wei, National University of Defense Tehnology, Changsha, P.R. China[CT, Fri. 17:10, Room 4℄One Type of Inverse Eigenvalue Problems in Quaternioni Quantum MehanisThe inverse eigenvalue problems studied in this paper is investigated in quaternioi quantum mehanis.Su�ient and neessary onditions for the existene of the solutions are given. The onstrained least-squaresproblems are also studied, and the su�ient and neessary onditions for the existene of the solutions aregiven. At last two numerial algorithm are given.(with Liang-gui Feng)Corral, Cristina, Universidad Politénia de Valenia, Valenia, Spain[CT, Mon. 11:10, Room 3℄ On Shur omplements of H-matriesIn [1℄ we have partitioned the H-matries set in three lasses: the invertible lass, the singular lass andthe mixed lass, depending on the non-singularity of the matries in the equimodular set. It is well-knownthat the Shur omplements of an H-matrix in the invertible lass all are H-matries (see [2℄). In this paperwe study the Shur omplements of the H-matries in the mixed and singular lasses, obtaining even, underertain onditions, H-matries in the invertible lass.Referenes[1℄ R. Bru, C. Corral, I. Gimenez and J. Mas. On general H-matries. Lin. Alg. Appl. (2007),doi:10.1016/j.laa.2007.10.030[2℄ J. Liu and Y. Huang. Some properties on Shur omplements of H-matries and diagonally dominantmatries. Lin. Alg. Appl., 389 (2004), 365�380.(with R. Bru, I. Giménez, J. Mas)Cortés, Vanesa, Universidad de Zaragoza, Zaragoza, Spain[CT, Fri. 15:30, Room 3℄Some properties of the lass sign regular matries and its sublassesAn m× n matrix is alled sign regular with signature ε if, for eah k ≤ min{m,n}, all its k × k minors havethe same sign or are zero. The ommon sign may di�er for di�erent k: the orresponding sequene of signsprovides the signature of the sign regular matrix. These matries play an important role many �elds, suhas Statistis, Approximation Theory or Computer Aided Geometri Design. In fat, nonsingular sign regularmatries are haraterizated as variation-diminishing linear maps: the maximum number of sign hanges inthe onseutive omponents of the image of a nonzero vetor is bounded above by the minimum number of signhanges in the onseutive omponents of the vetor. We study several properties of these matries, fousingour analysis on some sublasses of sign regular matries with ertain partiular signatures.(with J. M. Peña) 12



Costa, Liliana, Centre for Researh on Optimization and Control, Aveiro, Portugal[CT, Mon. 10:45, Room 4℄ Ayli Birkho� PolytopeA real square matrix with nonnegative entries and all rows and olumns sums equal to one is said to bedoubly stohasti. This denomination is assoiated to probability distributions and it is amazing the diversityof branhes of mathematis in whih doubly stohasti matries arise (geometry, ombinatoris, optimizationtheory, graph theory and statistis). Doubly stohasti matries have been studied quite extensively, espeiallyin their relation with the van der Waerden onjeture for the permanent. In 1946, Birkho� published aremarkable result asserting that a matrix in the polytope of n × n nonnegative doubly stohasti matries,
Ωn , is a vertex if and only if it is a permutation matrix . In fat, Ωn is the onvex hull of all permutationmatries of order n. The Birkho� polytope Ωn is also known as transportation polytope or doubly stohastimatries polytope. Reently Dahl disussed the sublass of Ωn onsisting of the tridiagonal doubly stohastimatries and the orresponding subpolytope

Ωt
n = {A ∈ Ωn : A is tridiagonal},the so-alled tridiagonal Birkho� polytope, and studied the faial struture of Ωt

n. In this talk we present aninterpretation of verties and edges of the ayli Birkho� polytope, Tn = Ωn(T ), where T is a given tree, interms of graph theory.(with C. M. da Fonsea and Enide Andrade Martins)Cox, Steve, Rie University, Houston, TX, USA[MS2, Thu. 17:20, Room 1℄Eigen-redution of Large Sale Neuronal NetworksThe modest pyramidal neuron has over 100 branhes with tens of synapses per branh. Partitioning eahbranh into 3 ompartments, with eah ompartment arrying say 3 membrane urrents, yields at least 20variables per branh and so, in total, a nonlinear dynamial system of roughly 2000 equations. We linearizethis system to, x'=Ax+Bu, y=Cx, where B permits synapti input into eah ompartment and C observesonly the soma potential. We redue this system by retaining the dominant singular diretions of the assoiatedontrollability and observability Grammians. We evaluate the error in soma potential between the full andredued models for a number of true morphologies over a broad (in spae and time) lass of synapti inputpatterns, and �nd that redued systems of dimension less then 10 aurately re�et the full quasi-ativedynamis. This savings will permit, for the �rst time, one to simulate large networks of biophysially aurateells over realisti time spans.(with Tony Kellems, Derrik Roos and Nan Xiao)Cravo, Glória, University of Madeira and CELC, Funhal, Portugal[CT, Tue. 10:35, Room 4℄Controllability of Matries with Presribed BloksLet F be a �eld and let n, p1, . . . , pk be positive integers suh that n = p1 + · · ·+ pk. Let
(C1, C2) =







C1,1 · · · C1,k−1... ...
Ck−1,1 · · · Ck−1,k−1


 ,




C1,k...
Ck−1,k





where the bloks Ci,j are of type pi× pj , i ∈ {1, . . . , k− 1}, j ∈ {1, . . . , k}.We study the possibility of (C1, C2)being ompletely ontrollable, when some of its bloks are �xed and the others vary.13



Our main results analyse the following ases:(i) All the bloks Ci,j are of the same size;(ii) The bloks Ci,j are not neessarily of the same size and k = 3.We also desribe the possible harateristi polynomial of a matrix of the form
C =



C1,1 · · · C1,k... ...
Ck,1 · · · Ck,k


when some of its bloks are presribed and the others are free.da Cruz, Henrique F., U.B.I, Covilhã, Portugal[CT, Thu. 18:10, Room 4℄On the matries that preserve the value of the immanant of the upper triangular matriesLet χ be an irreduible harater of the symmetri group of degree n, let Mn(F ) be the linear spae of

n-square matries with elements in F , let TU
n (F ) be the subset ofMn(F ) of the upper triangular matries andlet dχ be the immanant assoiated with χ. We denote by T (Sn, χ) the set of all A ∈Mn(F ), suh
dχ(AX) = dχ(X),for all X ∈ TU

n (F ). In [1℄ it was proved that if χ is self assoiated or χ = 1, the prinipal harater, then
T (Sn, χ) =

⋃

σ∈Sn,χ(σ) 6=0

{P (σ)R : R ∈ TU
n (F ), det(R) =

χ(id)

χ(σ)
}.If χ is not self assoiated the problem remains unsolve. In this talk we present a omplete desription of

T (Sn, χ) with χ = (n− 1, 1) or χ = (n− 2, 2).Referenes[1℄ R. Fernandes, Matries that preserve the value of the generalized matrix funtion of the upper triangularmatries, Linear Algebra Appl. 401 (2005), 47-65.(with Rosário Fernandes)Damm, Tobias, TU Kaiserslautern, Kaiserslautern, Germany[MS5, Fri. 15:55, Room 2℄Algebrai Gramians and Model Redution for Di�erent System ClassesModel order redution by balaned trunation is one of the best-known methods for linear systems. It ismotivated by the use of energy funtionals, preserves stability and provides strit bounds for the approximationerror. The omputational bottlenek of this method lies in the solution of a pair of dual Lyapunov equationsto obtain the ontrollability and the observability Gramian, but nowadays there are e�ient methods whihwork for large-sale systems as well. These advantages motivate the attempt to apply balaned trunationalso to other lasses of systems. For example, there is an immediate way to generalize the idea to stohastilinear systems, where one has to onsider generalized versions of Lyapunov equations. Similarly, one an de�neenergy funtionals and Gramians for nonlinear systems and try to use them for order redution. In general,however, these Gramians are very ompliated and pratially not available. As an approximation, one may
14



use algebrai Gramians, whih again are solutions of ertain generalized Lyapunov equations and whih givebounds for the energy funtionals. This approah has been taken e.g. for bilinear systems of the form
ẋ = Ax+

k∑

j=1

Njxuj +Bu ,

y = Cx ,whih arise e.g. from the disretization of di�usion equations with Robin-type boundary ontrol. In the talkwe review these generalizations for di�erent lasses of systems and disuss omputational aspets.Day, Jane, San Jose State University, San Jose, CA, USA[CT, Thu. 16:55, Room 3℄ Graph Energy Change Due to Edge DeletionThe energy of a graph is the sum of the singular values of its adjaeny matrix. We are interested in the e�eton energy when one edge is removed, or a set of edges. A singular value inequality for a partitioned matrixproves useful for studying suh questions. We desribe an in�nite family of graphs for whih eah graph hasan edge whose removal leaves the energy unhanged, another family for whih removing any edge dereasesenergy and still another in�nite family for whih removing any edge inreases the energy. We give a su�ientondition on a graph G and edges e suh that the energy stritly dereases when e is removed. We have similarresults for removing a ut set.Deaett, Louis, University of Wisonsin-Madison, Madison, WI, USA[MS1, Thu. 12:15, Room 1℄The graph and rank of a positive semide�nite matrixFrom a well-known 1991 result of M. Rosenfeld, if A is a positive semide�nite matrix whose orrespondinggraph G(A) ontains no triangle then the number of verties of G(A) is at most twie the rank of A. This gives
ω(G) ≤ 2⇒ mr+(G) ≥ ⌈n/2⌉.We explore the struture of matries that ahieve this bound, and investigate whether other features of therelationship between mr+(G) and the struture of G an thereby be illuminated.DeAlba, Luz, Drake University, Des Moines, USA[MS1, Fri. 16:20, Room 1℄ The Q-matrix ompletion problemA partial matrix is a matrix that ontains some spei�ed entries, while all other entries remain unspei�edand an be freely assingned a value. An n × n partial matrix, B, spei�es a digraph D = (VD, AD), if

VD = {1, 2, . . . , n}, and (i, j) ∈ AD if and only if the entry bij of B is spei�ed. A real n × n matrix is a
Q-matrix if for every k = 1, 2, . . . , n, the sum of all k × k prinipal minors is positive. A partial matrix is apartial Q-matrix if the sum of all k × k prinipal minors is positive for every k for whih all k × k prinipalmatries are fully spei�ed. A digraph D is said to have Q-ompletion if every partial Q-matrix speifying
D an be ompleted to a Q-matrix. In this presentation we give su�ient onditions for a digraph to have
Q-ompletion, we also give neessary onditions for a digraph to have Q-ompletion, and haraterize thosedigraphs of order at most four that have Q-ompletion.(with Leslie Hogben and Bhaba Sharma) 15



Dhillon, Inderjit, University of Texas, Austin, USA[MS2, Thu. 16:55, Room 1℄ On some modi�ed root-�nding problemsModern problems in data analysis require the solution of some interesting matrix nearness problems. Onesuh problem arises when using an information-theoreti distane measure alled the von Neumann matrixdivergene (related to von Neumann entropy). The matrix nearness problem in turn leads to a modi�ed root-�nding problem involving the matrix exponential. In this talk, I will show how the Newton method an beapplied to solve this problem. The entral issue is the e�ient alulation of the derivative whih involves thematrix exponential and a �diagonal + low-rank� eigenvalue problem.(with Matyas Sustik)Dodig, Marija, CELC, Universidade de Lisboa, Lisbon, Portugal[CT, Mon. 10:45, Room 3℄ Singular systems, state feedbak problemIn this talk, the strit equivalene invariants by state feedbak for singular systems are studied. As the mainresult we give the neessary and su�ient onditions under whih there exists a state feedbak suh that theresulting system has presribed pole struture as well as row and olumn minimal indies. This result presentsa generalization of previous results of state feedbak ation on singular systems.Dogan-Dunlap, Hamide, UTEP, El Paso, TX, USA[MS4, Mon. 11:10, Room 1℄Thinking Modes Revealed on Students' Responses from an Assignment on LinearIndependeneThe main goal of our work was to doument di�erenes on the type of modes students use after being exposedto two di�erent interventions. Both interventions used omputer-based ativities providing numerial (�rstintervention) and geometrial (seond intervention) representations. Only the modes displayed on studentresponses from an assignment that was given during the seond intervention are reported here. This assign-ment onsisted of seven questions on linear independene. The aspets of forty-�ve matrix algebra students'thinking modes are doumented in light of Sierpinska's framework on thinking modes (2000)*. Our qualitativeanalysis implemented a onstant omparison method, an indutive approah to lassifying responses throughemerging themes. Our analysis revealed that, in onrete (traditional) questions that do not require gener-alization/abstration, students' responses inluded various geometrial aspets of vetors and planes in R3.Some of whih are as follows: �vetors oming out of a plane," �Vetors that lie on the same plane," and �themagnitude of vetors are the same/di�erent." Even though, students used graphial modes in their responsesfor the onrete questions, when answering more abstrat questions requiring onjeture and generalization,many of these students' responses fell bak on the algebrai and arithmeti modes. Some for instane statedmainly the formal de�nition of linear independene without showing any work/omputation to justify theiranswers for these questions. We should also note that despite this fat, the seond most ommon mode usedin the abstrat questions were geometrial. We furthermore observed that the notable number of studentsmade arguments using multiple modes; numerial, algebrai and geometrial. One may infer from this that, atthis point, students may begin reasoning in multiple modes. We believe that this is a desired behavior towardforming a rih oneptual understanding of linear independene.*Sierpinska, A. 2000. On some aspets of students' thinking in linear algebra, The Teahing of Linear Algebrain Question, The Netherlands 2000, pp. 209�246. 16



Dolinar, Gregor, Faulty of Eletrial Engineering, Ljubljana, Slovenia[CT, Thu. 17:20, Room 4℄ General preservers of quasi-ommutativityLet Mn be the algebra of all n×n matries over the omplex �eld C. We say that A,B ∈Mn quasi-ommuteif there exists a nonzero ξ ∈ C suh that AB = ξBA. In the paper we lassify bijetive not neessarily linearmaps Φ: Mn →Mn whih preserve quasi-ommutativity in both diretions.(with Bojan Kuzma)Domínguez, María Elena, Universidad Politénia de Madrid, Madrid, Spain[CT, Mon. 17:20, Room 3℄General solution of ertain matrix equations arising in �lter design appliationsIn this work we present the expliit expression of all retangular Toeplitz matries B,C whih verify theequation BBH +CCH = aI for some a > 0. This matrix equation arises in some signal proessing problems.For instane, it appears when designing the even and odd omponents of paraunitary �lters, whih are widelyused for signal ompression and denoising purposes. We also point out the relationship between the abovematrix equation and the polynomial Bezout equation |B(z)|2 + |C(z)|2 = a > 0 for |z| = 1. By exploiting thisfat, our results also yield a onstrutive method for the parameterization of all solutions B(z), C(z). Themain advantage of our approah is that B are C are built without need of spetral fatorization. Besides thesetheoretial advanes, in order to illustrate the e�etiveness of our approah, some examples of paraunitary�lters design are �nally given.Dopazo, Esther, Faultad de Informátia. Universidad Politénia de Madrid, Boadilla del Monte, Madrid,Spain[CT, Fri. 10:35, Room 4℄Further results on the representation of the Drazin inverse of a 2× 2 blok matrixLet A be an n×n omplex matrix. The Drazin inverse of A is the unique matrix AD satisfying the relations:
ADAAD = AD, ADA = AAD, Ak+1AD = Awhere k = Ind(A), the index of A, is the smallest nonnegative integer suh that

rank(Ak) = rank(Ak+1). The onept of Drazin inverse plays an important role in various �elds like Markovhains, singular di�erential and di�erene equations, iterative methods, et. A hallenge of great interest inthis area is to establish an expliit representation for the Drazin inverse of a 2×2 blok matrixM =

(
A B
C D

),where A and D are square matries, in terms of AD and DD with arbitrary bloks A, B, C and D. It wasposed as an open problem by Campbell and Meyer in 1979, in onetion with the problem to �nd generalexpressions for the solutions of the seond-order system of the di�erential equations
Ex′′(t) + Fx′(t) +Gx(t) = 0,where the matrix E is singular. Starting from the general formula given by C. D. Meyer and N. J. Rose [6℄ forthe Drazin inverse of triangular blok matries (B = 0 or C = 0), an intensive researh has been developed onthis topi. Reently, some partial results have been obtained under spei� onditions [1-5,7℄. In this paper,we provide an expliit formula for 2× 2 blok matries assuming the geometrial ondition
R(B) ⊂ N (C) ∩ N (D)where R(· ) and N (· ) denote the range and the null spae of the orresponding matrix, respetively. It gener-alizes results given by R. E. Hartwig, X. Li and Y. Wei [4℄ and by D. S. Djordjevi and P. S. Stanmirovi [3℄.From our main result, some speial ases and perturbation results are derived.This researh has been partly supported by projet MTM2007-67232, �Ministerio de Eduaión y Cienia" ofSpain. 17



Referenes[1℄ D. Cvetkovi-Ili, A note on the representation for the Drazin inverse of 2 × 2 blok matries , LinearAlgebra and its appliations (2008), doi:10.1016/j.laa.2008.02.019.[2℄ N. Castro-González, E. Dopazo, J. Robles, Formulas for the Drazin inverse of speial blok matries ,Appl. Math. Comput., 174 (2006), 252�270.[3℄ D. S. Djordjevi¢, P. S. Stanimirovi¢, On the generalized Drazin inverse and generalized resolvent ,Czehoslovak Math. J., 51 (126) (2001), 617�634.[4℄ R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a 2 × 2 blok matrix , SIAM J.Matrix Anal. Appl., 27 (2006) 757�771.[5℄ X. Li, Y. Wei, A note on the representations for the Drazin inverse of 2×2 blok matries , Linear AlgebraAppl. 423 (2007) 332�338.[6℄ C.D. Meyer, Jr., N. J. Rose, The index and the Drazin inverse of blok triangular matries, SIAM J. Appl.Math. 33 (1977), 1�7.[7℄ Y. Wei, Expression for the Drazin of 2×2 blok matrix, Linear and Multilinear Algebra 45 (1998) 131�146.(with M. F. Martínez-Serrano and N. Castro-González)Esen, Özlem, Anadolu University, Eskisehir, Turkey[CT, Fri. 17:10, Room 3℄ On The Root Clustering of MatriesRoot lustering problems of matries are onsidered. Here we are given onditions for eigenvalues of a matrixto lie in a presribed subregion D of the omplex plane. The region D (stability region ) is de�ned by rationalfuntions. A simple neessary and su�ient ondition for stability of a single matrix is obtained. For aommutting polynomial family a neessary and su�ient ondition in terms of a ommon solution to a setof Lyapunov inequalities is derived. A simple su�ient ondition for the Hurwitz stability of a ommuttingquadrati polynomial matrix family is given.Estatio, Claudio, Universitá di Cagliari, Cagliari, Italy[MS3, Fri. 10:35, Room2℄Blok splitting least square regularization for strutured matries arising in nonlinearmirowave imagingNonlinear inverse problems arising in a lot of real appliations generally leads to very large saled and stru-tured matries, whih require a wide analysis in order to redue the numerial omplexity, both in time andspae. Sine these problems are ill-posed, any solving strategy based on linearization involves a some leastsquare regularization. In this talk a mirowave imaging problem is introdued: the dieletri properties of anobjet under test (i.e., the output image to restore) are retrieved by means of its sattered mirowave ele-tromagneti �eld (i.e., the input data). By a theoretial point of view, the mathematial model is a nonlinearintegral equation with strutured shift variant integral kernel. By a numerial point of view, the lineariza-tion and disretization gives rise to an ill-onditioned blok arrow matrix with strutured bloks, whih isiteratively solved by a three-level regularizing Inexat-Newton sheme as follows: (i) the �rst (outer) level ofiterations is related to a least square Gauss-Newton linearization; the seond level of iterations is related toa blok splitting iterative sheme; (iii) the third and nested inner level of iterations is related to a regular-ization iterative method for any system blok arising from any level II iteration. After that, post-proessingtehniques based on linear super-resolution improves the quality of the results, and some numerial results are18



given and ompared.This is a joint work with Professor J. Nagy of the Emory University, Atlanta, and Professors F. Di Benedetto,M. Pastorino, A. Randazzo and G. Bozza, of the University of Genova, Italy.BibliographyC. Estatio, G. Bozza, A. Massa, M. Pastorino, A. Randazzo,�A two steps inexat-Newton method for eletromagneti imaging of dieletri strutures from real data�,Inverse Problems, 21, pp. S81�S94, 2005.C. Estatio, G. Bozza, M. Pastorino, A. Randazzo,�An Inexat-Newton method for mirowave reonstrution of strong satterers�, IEEE Antennas and WirelessPropagation Letters, 5, pp. 61-64, 2006.F. Di Benedetto, C. Estatio, J. Nagy,�Numerial linear algebra for nonlinear mirowave imaging�, in preparation.*with J. Nagy, F. di Benedetto, M. Pastorino, A. Randazzo, and G. Boza)Eubanks, Sherod, Washington State University, Pullman, USA[MS8, Mon. 18:10, Room 1℄ Generalized Soules MatriesI will disuss a generalization of Soules matries and its appliation to the nonnegative inverse eigenvalueproblem, eventually nonnegative matries, and exponentially nonnegative matries.Fassbender, Heike, TU Braunshweig, Braunshweig, Germany[Plenary, Thu. 8:10�9:05℄Strutured Methods for Eigenproblems with Hamiltonian Spetral SymmetryIntrodutionIt usually takes a long proess of simpli�ations, linearizations and disretizations before one omes up withthe problem of omputing the eigenvalues or invariant subspaes of a matrix. These tehniques typially leadto highly strutured matrix representations, whih, for example, may ontain redundany or inherit somephysial properties from the original problem. As a simple example, let us onsider a quadrati eigenvalueproblem of the form
(λ2In + λC +K)x = 0, (5)where C ∈ Rn×n is skew-symmetri (C = −CT ), K ∈ Rn×n is symmetri (K = KT ), and In denotesthe n × n identity matrix. Eigenvalue problems of this type arise, e.g., from gyrosopi systems [8, 12℄ orMaxwell equations [9℄; they have the physially relevant property that all eigenvalues appear in quadruples

{λ,−λ, λ̄,−λ̄}, i.e., the spetrum is symmetri with respet to the real and imaginary axes.Linearization turns (5) into a matrix eigenvalue problem, e.g., the eigenvalues of (5) an be obtained fromthe eigenvalues of the matrix
A =

[
− 1

2C
1
4C

2 −K
In − 1

2C

]
. (6)This 2n× 2n matrix is strutured, its 4n2 entries depend only on the n2 entries neessary to de�ne C and K.The matrix A has the partiular property that it is a Hamiltonian matrix, i.e., A is a two-by-two blok matrixof the form [

B G
Q −BT

]
, G = GT , Q = QT , B,G,Q ∈ R

n×n.Considering A to be Hamiltonian does not apture all the struture present in A but it aptures an essentialpart: the spetrum of any Hamiltonian matrix is symmetri with respet to the real and and imaginary axes.19



Hamiltonian matries also arise in appliations related to linear ontrol theory for ontinuous-time sys-tems [1℄. Deiding whether a ertain Hamiltonian matrix has purely imaginary eigenvalues is the most ritialstep in algorithms for omputing the stability radius of a matrix or the H∞ norm of a linear time-invariantsystem, see, e.g., [5, 6℄.When omputing the eigenvalues of a Hamiltonian eigenvalue problem with a standard method like the QRmethod, the omputed eigenvalues will not obey the eigenvalue pairing {λ,−λ, λ̄,−λ̄}, for omplex eigenvalueswith nonzero real part and {λ,−λ} for real and purely imaginary eigenvalues. The desribed eigenvalue pairingsoften re�et important properties of the underlying appliation and should thus be preserved in �nite-preisionarithmeti. Numerial methods that take this struture into aount are apable of preserving the eigenvaluepairings of the original eigenvalue problem (5), despite the presene of roundo� and other approximationerrors. Besides the preservation of suh eigenvalue symmetries, there are several other bene�ts to be gainedfrom using struture-preserving algorithms in plae of general-purpose algorithms for omputing eigenvalues.These bene�ts inlude redued omputational time and improved eigenvalue/eigenvetor auray.
QR-like algorithms that ahieve this goal have been developed in [4, 6, 13℄ while Krylov subspae methodstailored to Hamiltonian matries an be found in [2, 3, 7, 8, 14℄. In this talk, we will review these methodsonentrating on the sympleti Lanzos method endowed with an impliit restarting strategy. Unfortunately,the implementation of e�ient loking and purging strategies for this method turns out to be even moreompliated than in the non-strutured, impliitly restarted Arnoldi (IRA) method. An elegant away aroundthis di�ulty was presented for IRA by Stewart [10, 11℄, using a Krylov-Shur deomposition tehnique. Inthis talk, we will disuss the appliation of this idea for the sympleti Lanzos proess. This will lead to fairlyeasy implementable purging and loking strategies whih improve the onvergene properties of the struturedeigensolver based on the sympleti Lanzos proess signi�antly. We demonstrate the e�ieny of the newsheme by testing the algorithm on several linear and quadrati eigenproblems with Hamiltonian spetralsymmetry.This is joint work with Peter Benner (TU Chemnitz, Germany) and Martin Stoll (University of Oxford,England).Referenes[1℄ P. Benner. Computational methods for linear-quadrati optimization. Supplemento ai Rendionti delCirolo Matematio di Palermo, Serie II, No. 58:21�56, 1999.[2℄ P. Benner and H. Faÿbender. An impliitly restarted sympleti Lanzos method for the Hamiltonianeigenvalue problem. Linear Algebra Appl., 263:75�111, 1997.[3℄ P. Benner, D. Kressner, and V. Mehrmann. Skew-Hamiltonian and Hamiltonian eigenvalue problems:Theory, algorithms and appliations. In Z. Drma£, M. Maru²i¢, and Z. Tutek, editors, Proeedings ofthe Conferene on Applied Mathematis and Sienti� Computing, Brijuni (Croatia), June 23-27, 2003,pages 3�39. Springer-Verlag, 2005.[4℄ P. Benner, V. Mehrmann, and H. Xu. A numerially stable, struture preserving method for omputingthe eigenvalues of real Hamiltonian or sympleti penils. Numer. Math., 78(3):329�358, 1998.[5℄ S. Boyd, V. Balakrishnan, and P. Kabamba. A bisetion method for omputing the H∞ norm of a transfermatrix and related problems. Math. Control, Signals, Sys., 2:207�219, 1989.[6℄ R. Byers. A Hamiltonian QR algorithm. SIAM J. Si. Statist. Comput., 7(1):212�229, 1986.[7℄ W. R. Ferng, W.-W. Lin, and C.-S. Wang. The shift-inverted J-Lanzos algorithm for the numerialsolutions of large sparse algebrai Riati equations. Comput. Math. Appl., 33(10):23�40, 1997.[8℄ V. Mehrmann and D. S. Watkins. Struture-preserving methods for omputing eigenpairs of large sparseskew-Hamiltonian/Hamiltonian penils. SIAM J. Si. Comput., 22(6):1905�1925, 2000.20



[9℄ F. Shmidt, T. Friese, L. Zshiedrih, and P. Deu�hard. Adaptive multigrid methods for the veto-rial Maxwell eigenvalue problem for optial waveguide design. In W. Jäger and H.-J. Krebs, editors,Mathematis. Key Tehnology for the Future, pages 279�292, 2003.[10℄ G.W. Stewart, A Krylov-Shur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23(2001), pp. 601�614.[11℄ , Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, USA, 2001.[12℄ F. Tisseur and K. Meerbergen. The quadrati eigenvalue problem. SIAM Rev., 43(2):235�286, 2001.[13℄ C. F. Van Loan. A sympleti method for approximating all the eigenvalues of a Hamiltonian matrix.Linear Algebra Appl., 61:233�251, 1984.[14℄ D. S. Watkins. On Hamiltonian and sympleti Lanzos proesses. Linear Algebra Appl., 385:23�45, 2004.(with Peter Benner (TU Chemnitz, Germany) and Martin Stoll (University of Oxford, England))Fassbender, Heike, TU Braunshweig, Braunshweig, Germany[MS6, Tue. 11:00, Room1℄On the numerial solution of large-sale sparse disrete-time Riati equationsInspired by a large-sale sparse disrete-time Riati equation whih arises in a spetral fatorization problemthe e�ient numerial solution of suh Riati equations is studied in this work. Spetral fatorization is aruial step in the solution of linear quadrati estimation and ontrol problems. A variety of methods has beendeveloped over the years for the omputation of anonial spetral fators for proesses with rational spetraldensities, see, e.g., the survey [6℄. One approah involves the spetral fatorization via a disrete-time Riatiequation. Whenever possible, we onsider the generalized disrete�time algebrai Riati equation
0 = R(X) = CTQC +ATXA− ETXE (7)

−(ATXB + CTS)(R+BTXB)−1(BTXA+ STC),where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, Q ∈ Rp×p, R ∈ Rm×m, and S ∈ Rp×m. Furthermore, Q and R areassumed to be symmetri and A and E are large and spare. For the partiular appliation above, we have
A =




0 1. . . . . .
0 1

0


 .The funtion R(X) is a rational matrix funtion, R(X) = 0 de�nes a system of nonlinear equations. Newton'smethod for the numerial solution of DAREs an be formulated as followsfor k = 0, 1, 2, . . .1. Kk ← K(Xk) = (R+BTXkB)−1(BTXkA+ STC).2. Ak ← A−BKk.3. Rk ←R(Xk).4. Solve for Nk in the Stein equation

AT
kNkAk − ETNkE = −Rk. (8)5. Xk+1 ← Xk +Nk.end forThe omputational ost for this algorithm mainly depends upon the ost for the numerial solution of theStein equation (8). This an be done using the Bartels�Stewart algorithm [1℄ or an extension to the ase E 6= I21



[2, 3, 4℄. The Bartels-Stewart algorithm is the standard diret method for the solution of Stein equations ofsmall to moderate size. This method requires the omputation of a Shur deomposition, and thus is notappropriate for large sale problems. The ost for the solution of the Stein equation is ≈ 73n3 �ops. Iterativeshemes have been developed inluding the Smith method [7℄, the sign-funtion method [5℄, and the alternatingdiretion impliit (ADI) iteration method [8℄. Unfortunately, all of these methods ompute the solution indense form and hene require O(n2) storage. In ase the solution to the Stein equation has low numerial rank(i.e., the eigenvalues deay rapidly) one an take advantage of this low rank struture to obtain approximatesolutions in low rank fatored form. If the e�etive rank is r ≪ n, then the storage is redued from O(n2) to
O(nr). This approah will be disussed here in detail.Referenes[1℄ R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX +XB = C: Algorithm 432,Comm. ACM, 15 (1972), pp. 820�826.[2℄ J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler, Solution of the Sylvester matrix equation

AXB + CXD = E, ACM Trans. Math. Software, 18 (1992), pp. 223�231.[3℄ J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler, Algorithm 705: A Fortran-77 software pakage for solving the Sylvester matrix equation AXBT + CXDT = E, ACM Trans. Math.Software, 18 (1992), pp. 232�238.[4℄ T. Penzl, Numerial solution of generalized Lyapunov equations, Adv. Comp. Math., 8 (1997), pp. 33�48.[5℄ J.D. Roberts, Linear model redution and solution of the algebrai Riati equation by use of the signfuntion, Internat. J. Control, 32 (1980), pp. 677�687. (Reprint of Tehnial Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).[6℄ A.H. Sayed and T. Kailath, A survey of spetral fatorization methods, Num. Lin. Alg. Appl., 8(2001), pp. 467�496.[7℄ R.A. Smith, Matrix equation XA+BX = C, SIAM J. Appl. Math., 16 (1968), pp. 198�201.[8℄ E.L. Wahspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Letters, 107 (1988),pp. 87�90.(with Peter Benner)Feng, Lihong, Faulty of Mathematis, TU Chemnitz, Chemnitz, Germany[MS5, Thu. 11:50, Room 2℄Parametri Model Redution for Systems with Coupled ParametersWe onsider model order redution of parametri systems with parameters whih are nonlinear funtions of thefrequeny parameter s. Suh systems result from, for example, the disretization of eletromagneti systemswith surfae losses [1℄. Sine the parameters are funtions of the frequeny s, they are highly oupled witheah other. We see them as individual parameters when we implement model order redution. By analyzingexisting methods of omputing the projetion matrix for model order redution, we show the appliabilityof eah method and propose an optimized method for the parametri system onsidered in this paper. Thetransfer funtion of the parametri systems onsidered here take the form
H(s) = sBT(s2In − 1/

√
sD +A)−1B, (9)where A,D and B are n×n and n×m matries, respetively, and In is the identity of suitable size. To applyparametri model order redution to (9), we �rst expand H(s) into a power series. Using a series expansion22



about an expansion point s0, and de�ning σ1 := 1
s2

√
s
− 1

s2
0

√
s0
, σ2 := 1

s2 − 1
s2
0

, we may use the three di�erentmethods below to ompute a projetion matrix V and get the redued-order transfer funtion
Ĥ(s) = sB̂T(s2Ir − 1/

√
sD̂ + Â)−1B̂,where Â = V TAV , B̂ = V TB, et., and V is an n× r projetion matrix with V TV = Ir. To simplify notation,in the following we use G := I − 1

s2
0

√
s0
D + 1

s2
0

A, BM := G−1B, M1 := G−1D, and M2 := −G−1A.Diretly omputing VA simple and diret way for obtaining V is to ompute the oe�ient matries in the series expansion
H(s) = 1

sB
T[BM + (M1BMσ1 +M2BMσ2) + (M2

1BMσ2
1

+(M1M2 +M2M1)BMσ1σ2 +M2
2BMσ2

2) + (M3
1BMσ3

1 + . . .) + . . .],
(10)by diret matrix multipliation and orthogonalize these oe�ients to get the matrix V [2℄. After the oe�-ients BM , M1BM ,M2BM , M2

1BM , (M1M2 +M2M1)BM , M2
2BM , M3

1BM , . . . are omputed, the projetionmatrix V an be obtained byrange{V } = orthogonalize{BM ,M1BM ,M2BM ,M2
1BM , (M1M2 +M2M1)BM ,M2

2BM ,M3
1BM , . . .} (11)Unfortunately, the oe�ients quikly beome linearly dependent due to numerial instability. In the end, thematrix V is often so inaurate that it does not possess the expeted theoretial properties.Reursively omputing VThe series expansion (10) an also be written into the following formulation:

H(s) =
1

s
[BM + (σ1M1 + σ2M2)BM + . . .+ (σ1M1 + σ2M2)

iBM + . . .] (12)Using (12), we de�ne
R0 = BM ,
R1 = [M1,M2]R0,...
Rj = [M1,M2]Rj−1,.... (13)We see that R0, R1, . . . , Rj , . . . inlude all the oe�ient matries in the series expansion (12). Therefore, wean use R0, R1, . . . , Rj , . . . to generate the projetion matrix V :range{V } = olspan{R0, R1, . . . , Rm}. (14)Here, V an be omputed employing the reursive relations between Rj , j = 0, 1, . . . ,m ombined with themodi�ed Gram-Shmidt proess [3℄.Improved algorithm for reursively omputing VNote that the oe�ientsM1M2BM andM2M1BM are two individual terms in (13), whih are omputed andorthogonalized sequentially within the modi�ed Gram-Shmidt proess. Observing that they are atually bothoe�ients of σ1σ2, they an be ombined together as one term during the omputation as in (11). Basedon this, we develop an algorithm whih an ompute V in (11) by a modi�ed Gram-Shmidt proess. Bythis algorithm, the matrix V is numerially stable whih guarantees the auray of the redued-order model.Furthermore, the size of the redued-order model is smaller than that of the redued-order model derived by(14). Therefore, this improved algorithm is optimal for the parametri system onsidered in this paper.23



Referenes[1℄ T. Wittig, R. Shuhmann, and T. Weiland. Model order redution for large systems in omputationaleletromagnetis. Linear Algebra and its Appliations, 415(2-3):499-530, 2006.[2℄ L. Daniel, O.C. Siong, L.S. Chay, K.H. Lee, and J. White. A multiparameter moment-mathing model-redution approah for generating geometrially parameterized interonnet performane models. IEEETrans. Comput.-Aided Des. Integr. Ciruits Syst., 22 (5):678�693, 2004.[3℄ L. Feng and P. Benner. A Robust Algorithm for Parametri Model Order Redution. Pro. Appl. Math.Meh., 7, 2008 (to appear).This researh is supported by the Alexander von Humboldt-Foundation and by the researh network SyreNe� System Redution for Nanosale IC Design within the program Mathematis for Innovations in Industryand Servies (Mathematik für Innovationen in Industrie und Dienstleistungen) funded by the German FederalMinistry of Eduation and Siene (BMBF).(with Peter Benner)Fernandes, Rosário, Centro de Estruturas Lineares e Combinatórias (CELC), Lisboa, Portugal[CT, Mon. 11:10, Room 4℄Rank partitions and overing numbers under small perturbations of an elementLet (v1, . . . , vm) be a family of vetors of Cn (where C is the �eld of omplex numbers). Let k be a positiveinteger. A subfamily (vi1 , . . . , vij
) of (v1, . . . , vm) is k-independent if it is the union of k subfamilies eah ofwhih is linearly independent. The k-dimension of (v1, . . . , vm) (denoted by dk(v1, . . . , vm)) is the maximumardinality of the k-independent subfamilies of (v1, . . . , vm). It was proved in �On the µ-olorings of a matroid"(J.A. Dias da Silva, Lin. Multil. Algebra 27 (1990), 25-32) that

(d1(v1, . . . , vm), d2(v1, . . . , vm)− d1(v1, . . . , vm), . . . , dm(v1, . . . , vm)− dm−1(v1, . . . , vm))is a partition of the number of the nonzero vetors in the family (v1, . . . , vm). This partition is alled therank partition. Let vi ∈ (v1, . . . , vm) be a nonzero vetor. The smallest integer s suh that ds(v1, . . . , vm) >
ds(v1, . . . , vi−1, vi+1, . . . , vm) is alled the overing number of vi in (v1, . . . , vm). In this talk we desribe howthe rank partition and the overing number an hange with arbitrarily small perturbations of a �xed element.Ferrer, Josep, Universitat Politenia de Catalunya, Barelona, Spain[CT, Tue. 12:15, Room 4℄Geometri struture of the equivalene lasses of a ontrollable pairIt is well known, in quite general onditions, the geometri struture of the orbits generated by the ationof a group in a di�erentiable manifold. It seems natural to ask for the geometri relationships when di�erentsubgroups are onsidered, that is to say, the geometri struture of the di�erent suborbits forming a lattie,and speially their intersetions (whih in general must not be an orbit, even not a di�erentiable manifold).Here, we present a full uni�ed panorama in the ase of pairs of matries representing linear systems, wheredi�erent equivalent relations an be onsidered: hanges of basis in the state spae and in the input spae,and feedbaks. The starting tools in this analysis are the Arnold's tehniques of versal deformations. Morespei�ally, we use two versal deformations of a pair of matries with regard to the blok similarity, and whenonly hanges in the state spae are allowed. Some interesting omments and remarks are derived onerningthe role of di�erent kind of feedbaks, the boundary of the suborbits, the e�ets of perturbing a pair...(with A. Compta and M. Peña) 24



Fonsea, Carlos, Department of Mathematis, University of Coimbra, Coimbra, Portugal[CT, Thu. 12:15, Room 3℄An inequality for the multipliity of an eigenvalueLet A(G) be a Hermitian matrix whose graph G is given. From the interlaing theorem, it is known that
mA(G\i)(θ) ≥ mA(G)(θ) − 1, where mA(G)(θ) is the multipliity of the eigenvalue θ of A(G). Motivated bythe Christo�el-Darboux Identity, in this talk we provide a similar inequality when a partiular path of G isdeleted.Fo²ner, Ajda, Institute of Mathematis, Physis and Mehanis, Ljubljana, Slovenia[CT, Mon. 11:35, Room 3℄Commutativity preserving maps on real matriesLet Mn(R) be the algebra of all n × n real matries. A map φ : Mn(R) → Mn(R) preserves ommutativityif φ(A)φ(B) = φ(B)φ(A) whenever AB = BA, A,B ∈ Mn(R). If φ is bijetive and both φ and φ−1 preserveommutativity, then we say that φ preserves ommutativity in both diretions. We will talk about non-linearmaps on Mn(R) that preserve ommutativity in both diretions or in one diretion only.Frank, Martin, University of Kaiserslautern, Kaiserslautern, Germany[CT, Tue. 17:45, Room 4℄An iterative method for transport equations in radiotherapyTreatment with high energy ionizing radiation is one of the main methods in modern aner therapy thatis in linial use. During the last deades two main approahes to dose alulation were used, Monte Carlosimulations and penil-beam models. A third way to dose alulation has not attrated muh attention inthe medial physis ommunity. This approah is based on deterministi transport equations of radiativetransfer. In this work, we study a full disretization of the transport equation whih yields a large linearsystem of equations. The omputational hallenge is that sattering is strongly forward-peaked, whih meansthat traditional solution methods like soure iteration fail in this ase. Therefore we propose a new method,whih ombines an inomplete fatorization of the sattering matrix and several iterative steps to obtain afast and aurate solution. Numerial examples are given.(with Bruno Dubroa)Freund, Roland, University of California, Davis, CA, USA[MS5, Thu. 12:15, Room 2℄The E�ets of De�ation in Projetion-Based Order RedutionIn reent years, there has been a lot of interest in order redution of large-sale linear dynamial systems.Many of the widely-used methods today employ some form of projetion onto suitably hosen blok Krylovsubspaes. It is well understood that numerially robust tehniques for onstruting bases for these blokKrylov subspaes need to be able to handle de�ation of linearly dependent or nearly linearly dependent Krylovvetors; the ase of linearly dependent vetors is alled exat de�ation, the ase of nearly linearly dependentvetors is alled inexat de�ation. It is also well known that, at least in exat arithmeti, the ourrene ofexat de�ation is a desirable event, in the sense that it inreases the auray of the redued-order model.On the other hand, in order to have numerial stable proedures, in �nite-preision arithmeti, one needs toperform inexat de�ation that in turn dereases the auray of the redued-order model. In this talk, wedisuss the e�ets of inexat de�ation in projetion-based order redution. We review some of the underlyingtheoretial results about exat de�ation, disuss some pratial remedies to minimize the loss of auray in the25



ase of inexat de�ation, and present results of numerial experiments. We will also onsider the speial aseof struture-preserving order redution tehniques, suh as SPRIM, that employ suitably hosen partitioningsof the underlying blok Krylov subspaes in order to preserve key strutures of the original large-sale lineardynamial system.Furtado, Susana, Centro de Estruturas Lineares e Combinatórias da U. L, Porto, Portugal[CT, Thu. 11:25, Room 3℄Order Invariant Spetral Properties for Several MatriesThe olletions of m n-by-n matries with entries in a �eld suh that the produts in any of the m! ordersshare a ommon similarity lass (resp. spetrum, trae) are studied. The spetral and trae order invariantproperties are haraterized and the similarity invariant one is related to them in several ases. A ompleteexpliit desription is given in ase m = 3 and n = 2.(with Charles Johnson)Furuihi, Shigeru, Nihon University, Tokyo, Japan[CT, Mon. 16:55, Room 4℄ On trae inequalities for produts of matriesSkew informations are expressed by the trae of produts of matries and power of matries. In my talk, westudy some matrix trae inequalities of produts of matries and the power of matries.(with Ken Kuriyama and Kenjiro Yanagi)Gassó, Maria T., Inst. Mat. Mult. Universidad Politénia Valenia, Valenia, Spain[CT, Tue. 12:15, Room 3℄The lass of Inverse-Positive matries with hekerboard patternIn eonomis as well as other sienes, the inverse-positivity of real square matries has been an importanttopi. A nonsingular real matrix A is said to be inverse-positive if all the elements of its inverse are nonnegative.An inverse-positive matrix being also a Z-matrix is a nonsingular M -matrix, so the lass of inverse-positivematries ontains the nonsingular M -matries, whih have been widely studied and whose appliations, forexample, in iterative methods, dynami systems, eonomis, mathematial programming, et, are well known.Of ourse, every inverse-positive matrix is not an M -matrix. For instane,
A =

(
−1 2

3 −1

)is an inverse-positive matrix that is not an M -matrix. The onept of inverse-positive is preserved by multi-pliation, left or right positive diagonal multipliation, positive diagonal similarity and permutation similarity.The problem of haraterizing inverse-positive matries has been extensively dealt with in the literature (seefor instane [1℄). The interest of this problem arises from the fat that a linear mapping F (x) = Ax from Rninto itself is inverse issotone if and only if A is inverse-positive. In partiular, this allows us to ensure theexistene of a positive solution for linear systems Ax = b for any b ∈ Rn
+. In this paper we present severalmatries that very often our in relation to systems of linear or nonlinear equations in a wide variety of areasinluding �nite di�erene methods for ontour problems, for partial di�erential equations, Leontief model ofirulating apital without joint prodution, and Markov proesses in probability and statistis. For example,matries that for size 5× 5 have the form

A =




1 −a 1 −a 1
1 1 −a 1 −a
−a 1 1 −a 1

1 −a 1 1 −a
−a 1 −a 1 1



,26



where a is a real parameter with eonomi interpretation. Are these matries inverse-positive?. We study theanswer of this question and we analyze when the onept of inverse-positive is preserved by the Hadamardprodut A ◦ A−1. In this work we present some onditions in order to obtain new haraterizations forinverse-positive matries. Johnson in [3℄ studied the possible sign patterns of a matrix whih are ompatiblewith inverse-positiveness. Following his results we analyze the inverse-positive onept for a partiular typeof pattern: the hekerboard pattern. An n × n real matrix A = (ai,j) is said to have a hekerboardpattern if sign(ai,j) = (−1)i+j , i, j = 1, 2, . . . , n. We study in this paper the inverse-positivity of bidiagonal,tridiagonal and lower (upper) triangular matries with hekerboard pattern. We obtain haraterizationsof the inverse-positivity for eah lass of matries. Several authors have investigated about the Hadamardprodut of matries. Johnson [2℄ showed that if the sign pattern is properly adjusted the Hadamard produtof M -matries is again an M -matrix and for any pairM ,N of M -matries the Hadamard produt M ◦N−1 isagain an M -matrix. This result does not hold in general for inverse-positive matries. We analyze when theHadamard produt M ◦ N−1, for M ,N hekerboard pattern inverse-positive matries, is an inverse-positivematrix.Referenes[1℄ A. Berman, R.J. Plemmons, Nonnegative matries in the Mathematial Sienes, SIAM 1994.[2℄ C.R. Johnson, A Hadamard Produt Involving M -matries, Linear Algebra and its Appliations, 4 (1977)261-264.[3℄ C.R. Johnson, Sign patterns of inverse nonnegative matries, Linear Algebra and its Appliations, 55(1983) 69-80.(with Manuel F. Abad, and Juan R. Torregrosa)Gaubert, Stephane, INRIA and CMAP, Eole Polytehnique, Palaiseau, Frane[MS7, Mon. 10:45, Room 2℄Using max-plus eigenvalues to bound the roots of a polynomialA lassial problem onsists in bounding the modulus of the zeros of a polynomial in terms of the modulus of itsoe�ients, or, more generally, in bounding the modulus of the eigenvalues of a matrix in terms of the modulusof its entries. We approah this problem using ideas of max-plus or tropial algebra. If p =
∑

0≤k≤n akx
kis a polynomial with omplex oe�ients, we de�ne the tropial roots of p to be the points x ≥ 0 at whihthe maximum max0≤k≤n |ak|xk is attained at least twie. This de�nition is natural if one onsiders themultipliative version of the max-plus semiring. The tropial roots an be omputed by a variant of theNewton polygon onstrution, in whih the usual valuation of a Puiseux series is replaed by the valuationwhih takes the opposite of the logarithm of the modulus of a omplex number. Tropial roots appeared beforethe tropial era in works of Ostrowski and Pólya on Grae�e's method, and they were already impliit in awork of Hadamard. We establish log-majorisation inequalities relating the moduli of the roots of a polynomial

p and ertain tropial roots, up to multipliative onstants depending only on the degree. Our approahrelies on matrix arguments, exploiting properties of the tropial analogues of the ompound matrix and ofthe eigenvalues. We show in partiular that the maximal iruit mean of the k-th tropial ompound of theompanion matrix of p is bounded above by the produt of the k largest tropial roots of p. We also show thatthe sequene of the moduli of the eigenvalues of a omplex matrix is weakly log-majorised by the sequene ofits tropial eigenvalues up to a multipliative onstant depending only on the dimension. We reover alongthese lines some previous inequalities due to Hadamard, Fujiwara, Speht and Ostrowski, and we also obtainnew inequalities.(with Marianne Akian (INRIA) and Adrien Brandejsky (ENS Cahan))27



Gavale, Martin, University of Hrade Králové, Hrade Králové, Czeh Republi[MS7, Wed. 11:25, Room 3℄ Permuted max-min eigenvetor problemEigenvetors in extremal algebras are motivated by steady states of disrete events systems whose behaviouris desribed by a square matrix orresponding to transition from one state of the system to the next state.In the situation when a given state vetor is not an eigenvetor of the transition matrix, then the system isnot stable and we may ask whether it is possible to renumber the inputs so that the system with permutedstates beomes stable. The following Permuted Eigenvetor problem (PEV) is disussed in this ontribution:Given a square matrix A and a vetor x of the same dimension in max-min algebra, deide whether there isa permutation π on indies suh that the permuted vetor xπ is an eigenvetor of matrix A, i.e A⊗ xπ = xπ .Analogous problem has reently been studied by P. Butkovi£ in [1℄ for matries and vetors in max-plusalgebra. It has been shown that the max-plus version of PEV is NP-omplete and so is IPEV, the restritionof PEV to integer values. Relations of PEV to further notions in max-min algebra, like strongly regularmatrix, simple image vetor (vetor with unique pre-image), generally trapezoidal matrix (see [2, 4℄), will bedesribed in the presentation. It will be shown that PSIV, the restrition of PEV to simple image vetors (andonsequently, to strongly regular matries) an be solved in polynomial time using the generally trapezoidalalgorithm GenTrap desribed in [3℄.Referenes[1℄ P. Butkovi£, Permuted max-algebrai (tropial) eigenvetor problem is NP-omplete, Linear Algebra andits Appliations 428 (2008) 1874-1882.[2℄ M. Gavale, J. Plavka, Strong regularity of matries in general max-min algebra, Linear Algebra and itsAppliations 371 (2003), 241-254.[3℄ M. Gavale, General trapezoidal algorithm for strongly regular max-min matries, Linear Algebra and itsAppliations 369 (2003), 319-338.[4℄ M. Gavale, J. Plavka, Simple image set of linear mappings in a max-min algebra, Disrete AppliedMathematis 155 (2007), 611-622.(with J. Plavka)Gemignani, Lua, Department of Mathematis University of Pisa, Pisa, Italy[Plenary, Thu. 15:30�16:25℄Eigenvalue Problems for Rank-strutured MatriesA reent signi�ant breakthrough in the �eld of numerial linear algebra is the design of fast and numeriallystable eigenvalue algorithms for ertain lasses of rank-strutured matries, inluding, for instane, diagonalplus low-rank and ompanion matries. Our developments in numerial methods for solving these large stru-tured eigenvalue problems are reviewed and state-of-the-art algorithms for both diret and inverse problemsare disussed. As well as important oneptual and theoretial aspets, emphasis is also plaed on morepratial omputational issues and appliations in matrix and polynomial omputations.
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Glebsky, Lev, Universidad Autónoma de San Luis Potosi, San Luis Potosi, Méxio[CT, Tue. 11:50, Room 3℄ On low rank perturbations of matriesThe talk is devoted to di�erent aspets of the question: �What an be done with a matrix by a low rankperturbation?" It is proved that one an hange a geometrially simple spetrum drastially by a rank 1perturbation, but the situation is quite di�erent if one restrits oneself to normal matries. Also the Jordannormal form of a perturbed matrix is disussed. It is proved that with respet to the distane d(A,B) =rank(A−B)
n (here n is the size of the matries) all almost unitary operators are near unitary.(with Luis Manuel Rivera)Goldberger, Assaf, Tel Aviv University, Tel Aviv, Israel[CT, Fri. 16:20, Room 3℄An upper bound on the harateristi polynomial of a nonnegative matrix leading to a proofof the Boyle�Handleman onjetureWe prove a onjeture by Boyle and Handelam, saying that if A ∈ Rn,n is a nonnegative matrix of rank rand spetral radius 1, and if χA(t) is its harateristi polynomial, then χA(x) ≤ xn− xn−r for all x ≥ 1. Ourproof is based on the Newton Identities.(with Mihael Neumann)Gouveia, María, Department of Mathematis, FCTUC, Coimbra, Portugal[CT, Mon. 16:55, Room 3℄ On a singular Toeplitz penilThe Toeplitz Penil Conjeture stated by W. Shmale and P.K. Sharma is equivalent to a onjeture for

n× n Hankel matries over C[x]. In this paper it is shown how results on the theory of Hankel matries overdomains an be used to solve this onjeture.Grout, Jason, Iowa State University, Ames, USA[MS1, Thu. 11:25, Room 1℄Charaterizing graphs with minimum rank at most a given number over a �nite �eld usingpolarities of projetive geometriesThe strutures of all graphs having minimum rank at most k over a �nite �eld with q elements will beharaterized for any possible k and q. A strong onnetion between this haraterization and polarities ofprojetive geometries will be explained. Using this onnetion, a few results in the minimum rank problemwill be derived by applying some known results from projetive geometry.Grudsky, Sergey, CINVESTAV del I.P.N., Méxio, Méxio[CT, Mon. 18:35, Room 3℄Uniform boundedness of Toeplitz Matries with variable oe�ientsUniform boundedness of sequenes of variable-oe�ient Toeplitz matries is a surprisingly deliate problem.We show that if the generating funtion of the sequene belongs to a smoothness sale of the Holder type andif α is the smoothness parameter, then the sequene may be unbounded for α < .05 while it is always boundedfor α < .05 29



Gugerin, Serkan, Virginia Teh, Blaksburg, VA, USA[MS5, Thu. 10:35, Room 2℄A Krylov-Based Desent Approah for the Optimal H2 Model Redution of Large-SaleDynamial SystemsIn this work, we present an approah to model redution for linear dynamial systems that is numeriallystable, omputationally tratable even for very large order systems, produes a sequene of monotone de-reasing H2 error norms, and is globally onvergent to a redued order model that is guaranteed to satisfy�rst-order optimality onditions with respet to H2 error. The interpolation points are the variables of theunderlying optimization problem. Convergene properties and e�etiveness of the algorithm are presentedthrough numerial examples.Guo, Chun-Hua, University of Regina, Regina, Canada[MS6, Tue. 11:25, Room 1℄On Newton's method and Halley's method for p-th roots of matriesIf A is any matrix with no eigenvalues on the losed negative real axis, the prinipal pth root of A, A1/p(p ≥ 2 is any integer), an be omputed by Newton's method or Halley's method (with X0 = I) after aproper preproessing if neessary. The matrix A may also be allowed to have semisimple zero eigenvalues.We show that Newton's method onverges to A1/p if all eigenvalues of A are in {z : |z − 1| ≤ 1} and allzero eigenvalues of A (if any) are semisimple. Suppose that all eigenvalues of A are in {z : |z − 1| < 1} andwrite A = I − B (so ρ(B) < 1). Let (I − B)1/p =
∑∞

i=0 ciB
i be the binomial expansion. Then the sequene

Xk generated by Newton's method or by Halley's method has the Taylor expansion Xk =
∑∞

i=0 ck,iB
i. ForNewton's method we show that ck,i = ci for i = 0, 1, . . . , 2k−1, and for Halley's method we show that ck,i = cifor i = 0, 1, . . . , 3k − 1.Guzmán, José Ramón, Instituto de Investigaiones Eonómias. UNAM., Méxio, Méxio[CT, Fri. 15:30, Room 4℄Redution of an Ito's di�usion input output model for the determination of square meanstabilityWhile Ito�s difussion is known for sientists oming of di�erent areas suh as physis, engineering, biology;for soial sientists it is pratially unknown. In this stohasti proess the relevant points to onsider arethe 1-mean stability (Lyapounov stability) and square mean stability, more strong that 1-mean stability. Inpartiular we propose a multisetoral difussion linear input output model. When onsidering this dynamialeonomi system there is assoiated a di�erenial equation system with symmetri state variables for theinvestigation of the square mean stability. Of this last system a d2×d2 matrix is obtained. Here is proposed ageneral algorithm that transforms the d2×d2 matrix to one of order ((d(d+1))/2)∗ ((d(d+1))/2), onservingthe same eigenvalues information. This redution algorithm allows us superomputations of eigenvalues forlarge sale dynamial input output systems.Harel, Guershon, Dept of Math, University of California, San Diego, San Diego, USA[MS4, Mon. 10:45, Room 1℄Intelletual Need and Its Role in Mathematis Instrution: Fous on Linear AlgebraThe notion of intelletual need is inextriably linked to the notion of epistemologial justi�ation. Generallyspeaking, epistemologial justi�ation refers to the learner's disernment of how and why a partiular pieeof knowledge ame to be. It involves the learner's pereived ause for the birth of knowledge. The pereivedause is a problemati situation whose resolution for the learner has neessitated for her or him the reation of30



a new knowledge. Suh a situation is alled intelletual need. Most students, even those who desire to sueedin shool, are intelletually aimless in mathematis lasses beause their teahers fail to help them realize anintelletual need for what they intent to teah them. In this talk I will disuss the role these two onstrutsshould play in mathematis instrution, fousing mainly on the learning and teahing of linear algebra.Hershkowitz, Danny, Tehnion, Haifa, Israel[MS1, Wed. 11:00, Room 1℄On nonnegative sign equivalent and sign similar fatorizations of matriesIt is shown that every real n × n matrix is a produt of at most two nonnegative sign equivalent matries,and every real n× n matrix, n=2, is a produt of at most three nonnegative sign similar matries. Finally, itis proved that every real n× n matrix is a produt of totally positive sign equivalent matries. However, thequestion of the minimal number of suh fators is left open.(with Allan Pinkus)Hn¥tynková, Iveta, Dep. of Mathematis, Arizona State University, Tempe, Arizona[MS3, Thu. 18:10, Room 2℄ On solvability of total least squares problemLet A be a real m by n matrix, and b a real m-vetor. Consider estimating x from an orthogonally invariantlinear approximation problem
Ax ≈ b, (15)where the data b, A ontain redundant and/or irrelevant information. In total least squares (TLS) this problemis solved by onstruting a minimal orretion to the vetor b and the matrix A suh that the orreted systemis ompatible. Contrary to the standard least squares approximation problem, a solution of a TLS problemdoes not always exist. In addition, the data b, A an su�er from multipliities and in this ase a TLSsolution may not be unique. Classial analysis of TLS problems is based on the so alled Golub - Van Loanondition σmin(A) > σmin([b, A]) , see [2, 4℄. This ondition is, however, intriate through the fat that itis only su�ient but not neessary for the existene of a TLS solution. A new ontribution to the theoryand omputation of linear approximation problems was published in a sequene of papers [5, 6, 7℄, see also[3℄. Here it is proved that the partial upper bidiagonalization [1℄ of the extended matrix [b, A] determinesa ore approximation problem A11x1 ≈ b1 , with the neessary and su�ient information for solving theoriginal problem given by b1 and A11. The transformed data b1 and A11 an be omputed either diretly,using Householder orthogonal transformations, or iteratively, using the Golub-Kahan bidiagonalization. Itis shown how the ore problem an be used in a simple and e�ient way for solving the total least squaresformulation of the original approximation problem.In this ontribution we disuss the neessary and su�ient ondition for the existene of a TLS solutionbased on the ore redution, and mention work on extensions of the results to linear approximation problemswith multiple right hand sides [8℄.Referenes[1℄ G. H. Golub, W. Kahan, Calulating the singular values and pseudo-inverse of a matrix, SIAM J. Numer.Anal. Ser. B 2, pp. 205�224, 1965.[2℄ G. H. Golub, C. F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17,pp. 883�893, 1980.[3℄ I. Hn¥tynková, Z. Strako², Lanzos tridiagonalization and ore problems, Lin. Alg. Appl. 421, pp. 243�251,2007. 31



[4℄ S. Van Hu�el, J. Vandewalle, The total least squares problem: omputational aspets and analysis, SIAM,Philadelphia, 1991.[5℄ C. C. Paige, Z. Strako², Saled total least squares fundamentals, Numer. Math. 91, pp. 117�146, 2002.[6℄ C. C. Paige, Z. Strako², Unifying least squares, total least squares and data least squares, in �Total LeastSquares and Errors-in-Variables Modeling�, S. van Hu�el and P. Lemmerling, editors, Kluwer AademiPublishers, Dordreht, pp. 25�34, 2002.[7℄ C. Paige, Z. Strako², Core problems in linear algebrai systems, SIAM J. Matrix Anal. Appl. 27, pp.861�875, 2006.[8℄ I. Hn¥tynková, M. Ple²inger, D. M. Sima, Z. Strako², S. Van Hu�el, The total least squares problem andredution of data in AX ≈ B, in preparation.(with Z. Strako² and M. Ple²inger)Hogben, Leslie, Iowa State University, Ames, Iowa, USA[Plenary, Mon. 8:20�9:15℄Minimum Rank Problems: Reent DevelopmentsThis talk will survey reent developments in the problem of determining the minimum rank of families ofmatries desribed by a graph, digraph or pattern.Horn, Roger, University of Utah, Salt Lake City, USA[CT, Mon. 12:00, Room 3℄A Canonial Form for Quasi-Real Normal Matries Under Real Orthogonal SimilarityA square omplex matrixA is quasi-real normal (QRN) if (a) it is normal, (b) the onjugate of every eigenvetoris an eigenvetor (possibly with a di�erent eigenvalue), and () its null spae is self onjugate. We show that Ais QRN if and only if it is normal and either it ommutes with its onjugate or it ommutes with its transpose(eah implies the other). The lass of QRN matries is losed under the equivalene relation of real orthogonalsimilarity, whih is simultaneously a similarity, a unitary ∗ongruene, and a unitary T ongruene. We give ablok diagonal anonial form for QRN matries under this equivalene relation.(with Geo�rey R. Goodson)Iannazzo, Bruno, Dipto. di Fisia e Mat., Università dell'Insubria, Como, Italy[MS6, Tue. 11:50, Room 1℄ Matrix iterations for matrix funtionsMatrix funtions od the type f(A), where f is some omplex funtion and A is a square matrix, are oftenomputed by matrix �xed-point iterations. These iterations are of the form Xk+1 = ϕ(Xk), where ϕ maydepend on A. We show how the onvergene of a matrix iteration is related to the onvergene of the sameiteration applied to the eigenvalues of A and we disuss the loal onvergene from whih the numerialstability of the iteration strongly depends. We onsider some spei� examples regarding the matrix pth root.
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Im, Bokhee, Chonnam National University, Gwangju, Korea(Rep. of)[CT, Thu. 11:00, Room 5℄Representations of trilinear produts in Comtrans algebrasUnlike the set of all Lie algebras, the set of all omtrans algebras on a given module has a linear struture.Let E be a �nite-dimensional vetor spae over a �eld k. Then we want to determine whih trilinear produts
xyz on E may be represented as linear ombinations of the ommutator and translator of a omtrans algebraon E in the manner of the following so-alled bogus produt:

xyz =
1

6
[x, y, z] +

1

6
[y, z, x] +

1

6
[z, x, y] +

1

3
〈x, y, z〉 − 1

3
〈z, x, y〉.If the underlying �eld is not of harateristi 3, then we show that the neessary and su�ient ondition forsuh a representation is

xxy + xyx+ yxx = 0 ,a ondition desribed as strong alternativity. Indeed, if the underlying �eld is also not of harateristi 2, theneah strongly alternative trilinear produt is represented as the bogus produt of a omtrans algebra. Anappropriate representation for the ase of harateristi 2 will also be given.(with Jonathan D. H. Smith)Jiang, Er-Xiong, Shanghai University, Shanghai, China[Plenary, Mon. 9:20�10:15℄Some inverse eigenvalue problems for Jaobi matriesLet
T1,n =




α1 β1

β1 α2
. . . 0. . . . . . . . .. . . . . . βn−10

βn−1 αn




.Denote
Tp,q =




αp βp 0
βp αp+1 βp+1

βp+1
. . . . . .. . . . . . βq−1

0 βq−1 αq




(p < q ≤ n.)If all βi > 0 i = 1, 2, ..., n− 1,we all T1,n a Jaobi matrix.The following 3 kinds of inverse eigenvalue problem for Jaobi matries will be disussed1.(K) problem [1℄, [2℄: Given 3 sets of real numbers {λ1, λ2, ..., λn}, {µ1, µ2, ..., µk−1}, {µk, µk+1, ..., µn−1},�nd a n × n Jaobi matrix T1,n,suh that λ1, λ2, ..., λn are eigenvalues of T1,n,µ1, µ2, ..., µk−1 are eigenvaluesof T1,k−1 and µk, µk+1, ..., µn−1 are the eigenvalues of Tk+1,n.2. Double dimension problem [3℄ [4℄ [5℄ [6℄: given a Jaobi matrix T1,nand given 2n real numbers
{λ1, λ2, ..., λ2n}, �nd a 2n × 2n Jaobi matrix T1,2n, suh that T1,n is a leading prinipal submatrix of T1,2nand λ1, λ2, ..., λ2n are the eigenvalues of T1,2n. 33



A periodi Jaobi matrix is an n× n real symmetri matrix of the form
Jn =




α1 β1 βn

β1 α2 β2 0

0 β2 α3
. . . 0... . . . . . . . . . ...

0
. . . αn−1 βn−1

βn 0 · · · 0 βn−1 αn




.

where βi > 0, i = 1, 2, ..., n.3. Periodi problem [4℄ [5℄, [7℄: Given two sets of real numbers {λ1, λ2, ..., λn} and {µ1, µ2, ..., µn−1},�nd a
n× n periodi Jaobi matrix Jn,suh that λ1, λ2, ..., λn are the eigenvalues of Jn and µ1, µ2, ..., µn−1 are theeigenvalues of T1,n−1 whih is the (n− 1)× (n− 1)leading prinipal submatix of JnReferenes[1℄ G. M. Gladwell and N. B. Willms, The reonstrution of a tridiagonal system from its frequeny resposeat an interior point, Inverse Problems, 4, 1988, pp.1013-1024.[2℄ Er-Xiong Jiang, An inverse eigenvalue problem for Jaobi matries, J. Comput. Math. 21, 2003, pp.569-584.[3℄ H. Hohstadt, On the Constrution of a Jaobi Matrix from Mixed Given Data, Linear Algebra and ItsAppl., 28, 1979, pp. 113-115.[4℄ S. F. Xu,An Introdution to Inverse Algebrai Eigenvalue Problems, Peking University Press, Beijing, 1998.[5℄ D. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems 3,pp.395-622,1987.[6℄ Hai-xia Liang, Er-xiong Jiang, An inverse eigenvalue problem for Jaobi matries, J. Comput. Math. Vol.25,No.5,2007,pp.620-630.[7℄ Yinghong Xu, Er-xiong Jiang, An inverse eigenvalue problem for periodi Jaobi matries, Inverse problems,23, 2007, pp. 165-181.Karow, Mihael, Tehnishe Universitat, Berlin, Germany[MS2, Fri. 11:50, Room 1℄Pseudospetra and Stability radii for Hamiltonian MatriesWe onsider the variation of the spetrum of Hamiltonian matries under Hamiltonian perturbations. The�rst part of the talk deals with the assoiated strutured pseudospetra. We show how to ompute these setsand give some examples. In the seond part we disuss the robustness of linear stability. In partiular wedetermine the smallest norm of a perturbation that makes the perturbed Hamiltonian matrix unstable.
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Kirkland, Steve, University of Regina, Regina, Canada[MS1, Wed. 11:25, Room 1℄Construting Laplaian Integral Split GraphsGiven a graph G, its Laplaian matrix, L, is de�ned as L = D − A, where A is the (0, 1) adjaeny matrixfor G, and D is the diagonal matrix of vertex degrees. A graph is Laplaian integral if the spetrum of itsLaplaian matrix onsists entirely of integers. A split graph is one whose vertex set an be partitioned as
A ∪B, where A indues a lique and B indues an independent set of verties. Merris has posed the problemof identifying and/or onstruting Laplaian integral split graphs. Using balaned inomplete blok designs,Diophantine equations, and Kroneker produts, we desribe a tehnique for onstruting in�nite families ofLaplaian integral split graphs, thus partially addressing the problem posed by Merris.(with N. Abreu, M. de Freitas and R. Del Vehio)Klasa-Bompoint, Jaqueline, Dawson College, Montreal, Canada[MS4, Tue. 16:55, Room 1℄Few pedagogial senarios in Linear Algebra with Cabri and MapleWith the appearane of very rapidly improving tehnologies, sine the 90's we have faed many reformmovements introduing muh more importane on the visualization of mathematial onepts together withmore soialization (Collaborative learning). Just to name few reform groups in the USA: Harvard Groupfor Calulus and for Linear algebra: ATLAST organized by S. Leon after the ILAS symposium of 1992 andLACSG started with D. Lay in 1990 and then ontinued with D. Carlson (1993) and many others. Howeversome researhers like J.P Dorier and A. Sierpinska were not optimist and delared �It is ommonly laimed inthe disussions about the teahing and learning of linear algebra, that linear algebra ourses are badly designedand badly taught and that no matter how it is taught, linear algebra remains a ognitively and oneptuallydi�ult subjet". On the other hand, M. Artigue advoates strongly the use of CAS's but with a onstantawareness that Mathematis learned in suh an environment of software are hanging. How do we really teahLinear algebra now? See the standard Anton's text book and then the muh praised book �Linear Algebra andits appliations" written in 1994 by D. Lay. How hard is it really now to teah and to learn this topi? We shallrepeat like J. Hillel, A. Sierpinska and T. Dreyfus that the teahing of Linear Algebra o�ers to students manyognitive problems related to three thinking modes intertwined: geometri, omputational (with matries)and algebrai (Symboli). We ould follow the APOS theory of E. Dubinsky and see that it will be neessaryfor the teaher to proeed to a geneti deomposition of every mathematial onept of Linear Algebra beforebeing able to oneive a pedagogi senario that will have to bring students from the �ation" to the moreelaborated state of �proess" and then lukily make them reah the most abstrat levels of �objets" and evenhigher strutured �shemes". While devising my lasses and omputer-labs to my students in Linear Algebra,I was inspired by all good ideas presented by the mentioned authors and many others as: G. Bagni, J.L. Dorierand Fishbein, D. Gentner, G. Harel, J. Hillel, J.G. Molina Zavaleta. I am a mathematiian who teahes ina CEGEP, whih is a speial ollege of Québe's provine in Canada. Pedagogial senarios based on Cabriand Maple will be presented in this study for some few stumbling bloks in the learning of Linear Algebra:linear transformations, eigenvetors and eigenvalues, quadrati forms and onis with hanges of bases, �nallysingular values. When immersed in this software environment, I restrit all the demonstrations to R2 and R3.Can visualization and manipulation improve and failitate the learning of Linear algebra? As I am biased,of ourse I will say yes; really we would need a strong evaluation and analysis of this teahing proedureto be able to give answers. As Ed. Dubinsky would say �This situation provides us with the opportunity tobuild a synthesis between the abstrat and onrete." The interplay between onrete phenomena and abstratthinking." I will add also, that students working in teams around omputers (or even graphi alulators) onlyoahed by the teaher at times, beome experts in the disipline they experiment with. About the roles of theCAS Maple and the geometrial software, we will agree with the Cabrilog slogan �Cabri makes tough mathsonepts easier to learn thanks to its kinaestheti learning approah!" while Maple ats like a good big brother,35



doing all the boring alulations for the students and also produing instrutive animations, unfortunatelymostly programmed by the teaher.Klein, Andre, University of Amsterdam, Amsterdam, The Netherlands[MS6, Tue. 12:15, Room 1℄Tensor Sylvester matries and information matries of multiple stationary proessesConsider the matrix polynomials A(z) and B(z) given by
A(z) =

p∑

j=0

Ajz
jand

B(z) =

q∑

j=0

Bjz
j,where A0 ≡ B0 ≡ In.Gohberg and Lerer [1℄ study the resultant property of the tensor Sylvester matrix

S⊗(−B,A) , S(−B ⊗ In, In ⊗A)or
S⊗(−B,A) =




(−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In 0n2×n2 · · · 0n2×n2

0n2×n2

. . . . . . . . . . . . ...... . . . . . . . . . . . . 0n2×n2

0n2×n2 · · · 0n2×n2 (−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In
In ⊗ In In ⊗A1 · · · In ⊗Ap 0n2×n2 · · · 0n2×n2

0n2×n2

. . . . . . . . . . . . ...... . . . . . . . . . . . . 0n2×n2

0n2×n2 · · · 0n2×n2 In ⊗ In In ⊗A1 · · · In ⊗Ap


. In [1℄ it is proved that the matrix polynomials A(z) and B(z) have at least one ommon eigenvalue if andonly if detS⊗(−B,A) = 0 or when the matrix S⊗(−B,A) is singular. In other words, the tensor Sylvestermatrix S⊗(−B,A) beomes singular if and only if the salar polynomials det A(z) = 0 and det B(z) = 0have at least one ommon root. Consequently, it is a multiple resultant. In [2℄, this property is extendedto the Fisher information matrix of a stationary vetor autoregressive and moving average proess, VARMAproess. The purpose of this talk onsists of displaying a representation of the Fisher information matrix ofa stationary VARMAX proess in terms of tensor Sylvester matries, the X stands for exogenous or ontrolvariable. The VARMAX proess is of ommon use in stohasti systems and ontrol.Kopparty, Bhaskara Rao, Indiana State University, Terre Haute, IN, USA[CT, Mon. 18:10, Room 2℄ Generalized inverses of in�nite matriesWe pose several problems about generalized inverses of in�nite matries. We shall review the literature andprove some positive results. 36



Körtesi, Peter, University of Miskol, Miskol, Hungary[CT, Thu. 10:35, Room 5℄Using Linear Algebra in Teahing Hamilton Quaternions and GraphsHamilton quaternions are usually introdued as generalization of omplex numbers respeting the basiidentities. We present a way to use matries to introdue quaternions and study their properties, using anisomorphism between the two skew-�eld strutures. The Eulerian and Hamiltonian trails and iruits an bedesribed as well using some adjaeny type matries in speial rings. The method to be presented is the sametime a su�ient ondition to deide weather the graph is Hamiltonian or not.Kressner, Daniel, ETH Zurih, Zurih, Switzerland[Plenary, Tue. 9:10�10:05℄ Matrix produt eigenvalue problemsIn its simplest form, the produt eigenvalue problem onsists of determining the eigenvalues and eigenvetorsof a matrix produt
Π = ApAp−1 · · ·A1with n × n matries Ak. The most general form is obtained by admitting retangular as well as invertedfators.The aim of this talk is to provide an overview of theoretial and numerial developments for suh eigenvalueproblems.On the theoretial side, we �rst relate existing anonial forms to the Kroneker-Weierstrass form of an em-bedded pn×pn blok yli matrix penil. This embedding also allows to derive various eigenvalue/eigenvetorperturbation results in a onvenient and elegant manner. In partiular, it is shown that an appropriate exten-sion of pseudospetra to matrix produts poses seemingly intratable omputational hallenges.On the numerial side, we mainly fous on QR and Krylov subspae type methods. The main issue is toformulate the method in suh a way that the expliit omputation of the matrix produt or parts thereof isompletely avoided. The periodi QR algorithm is suh a method, suitable for produts with medium-sizeddense fators. Novel pre- and post-proessing steps are presented that admit (a) the treatment of retangularfators, and (b) the e�ient omputation of invariant subspaes. For produts with large-sized fators, avariant of the impliitly restarted Arnoldi algorithm is presented.Based on the presented results, a Fortran 77/Matlab software pakage for solving produt eigenvalueproblems is being developed. Matlab's operator overloading failities lead to a partiularly onvenient userinterfae for dealing with matrix produts.This is partly joint work with Robert Granat and Bo Kågström, Umeå University.La�ey, Thomas, University College Dublin, Dublin, Ireland[MS8, Mon. 17:45, Room 1℄Some onstrutive tehniques in the nonnegative inverse eigenvalue problemLet σ := (λ1, ... , λn) be a list of omplex numbers and let

sk := λk
1 + ... + λk

n, k = 1, 2, 3, ...be the assoiated Newton power sums. A famous result of Boyle and Handelman states that if all the sk arepositive, then there exists a nonnegative integer N suh that
σN := (λ1, ... , λn, 0, ... , 0), (N zeros)is the spetrum of a nonnegative (n+N)× (n+N) matrix A. The problem of obtaining a onstrutive proofof this result with an e�etive bound on the minimum number N of zeros required has not yet been solved.37



We present a number of tehniques for onstruting nonnegative matries with given nonzero spetrum σ,and use them to obtain new upper bounds on the minimal size of suh an A, for various lasses of σ. This isjoint work with Helena Smigo.(with �migo, Helena)Lanaster, Peter, University of Calgary, Calgary, Canada[MS6, Tue. 16:55, Room 2℄ Linearization of Matrix PolynomialsA preise form will be given to the notion of linearization of matrix polynomials, with speial referene tothe notion of an eigenvalue at in�nity. This will be illustrated with linearizations of matrix polynomials whenrepresented in various polynomial bases; orthogonal and otherwise. This is a report on ollaborative workwith A. Amiraslani(University of Calgary) and R.W. Corless (University of Western Ontario).(with A. Amiraslani and R.W. Corless)Lee, Gue Myung, Pukyong National University, Busan, Korea[CT, Thu. 18:35, Room 4℄Complexity Analysis of the Primal-Dual Interior Point Method for Seond-order ConeOptimization ProblemThe purpose of this talk is to extend the Bai et al.'s omplexity results for a linear program to a seond-orderone optimization (SOCO) problem. We de�ne a proximity funtion for SOCO by a kernel funtion introduedby Bai et al. [SIAM J. Optim., 13(2003), 766-782℄ and using the proximity funtion, we formulate an algorithmfor a large-update primal-dual interior-point method (IPM) for SOCO and give its omplexity analysis, andthen we show that the worst-ase iteration bound for our IPM is O(
√
N logN log N

ǫ ).(with Bo Kyung Choi)Lee, Hosoo, Kyungpook National University, Daegu, Korea[CT, Mon. 18:35, Room 4℄Contrations and nonlinear matrix equations on positive de�nite onesIn this talk we onsider the semigroup generated by the self-maps on the open onvex one of positivede�nite matries of translations, ongruene transformations and matrix inversion that inludes sympletiHamiltonians and show that every member of the semigroup ontrats any invariant metri distane inheritedfrom a symmetri gauge funtion. This extends results of Bougerol for the Riemannian metri and of Liverani-Wojtkowski for the Thompson part merti. A uniform upper bound of the Lipshitz ontration onstant fora member of the semigroup is given in terms of the minimum eigenvalues of its determining matries. Weapply this result to a variety of nonlinear equations inluding Stein and Riati equations for uniqueness andexistene of positive de�nite solutions and �nd a new onvergene analysis of iterative algorithms for thepositive de�nite solution depending only on the least ontration oe�ient for the invariant metri from thespetral norm.(with Yongdo Lim)
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Leon, Steven, University of Massahusetts Dartmouth, Dartmouth, MA 02747, USA[MS4, Tue. 17:20, Room 1℄ When MATLAB Gives "Wrong" AnswersOne of the main di�erenes between teahing the standard linear algebra ourse and a ourse in numeriallinear algebra is that in the latter ourse all omputations are done using �nite preision arithmeti. One wayto illustrate the importane of this di�erene is to look at examples where omputational software pakagessuh as MATLAB appear to be giving wrong answers. In this talk we examine four or �ve suh senarios. Ineah ase we look at examples and explain how and why MATLAB arrives at its answers. In our �nal examplewe examine a MATLAB program that learly produes an impossible answer. In this ase, when the authorof the program tried to debug it by printing out intermediate results, the value of the omputed solutionhanged. What is going on? Is MATLAB exhibiting some sort of Heisenberg e�et? All will be explained atthe talk.Li, Chi-Kwong, College of William and Mary, Williamsburg, USA[MS2, Fri. 11:25, Room 1℄Eigenvalues of the sum of matries from unitary similarity orbitsLet A and B be n × n omplex matries. Charaterization is given for the set E(A,B) of eigenvalues ofmatries of the form U∗AU + V ∗BV for some unitary matries U and V . Consequenes of the results aredisussed and omputer algorithms and programs are designed to generate the set E(A,B). The results re�nethose of Wielandt on normal matries. Extensions of the results to the sum of matries from three or moreunitary similarity orbits are also onsidered.(with Yiu-Tung poon and Nung-Sing Sze)Loiseau, Jean Jaques, IRCCyN-CNRS, Nantes, Frane[MS7, Wed. 11:00, Room 3℄Robust stability of positive di�erene equationsWe onsider the system of di�erene equations
x(t) =

ν∑

k=1

akx(t− βk),where ak ∈ R, βk ∈ R, for k = 1 to ν. We assume that the delays are in inreasing order, 0 = β0 < β1 <
β2 < . . . < βν . Suh equation appear as models in biology, eonomy, and from the wave equation (see [3℄for examples). The stability of this system was addressed in the referenes [1�4℄. They provide a ompleteanalysis, and point out a very speial phenomenon, that the zeros of the harateristi equation

1−
ν∑

k=1

ake−βks = 0 ,where s ∈ C, do not ontinuously depend on the parameters βk. The result is that, if the delays are rationallyindependant, the system is stable (both in the sense of L2�stability and of expenential stability) if and onlythe following holds
ν∑

k=1

|ak| < 1 .39



At the ontrary, when the delays are rationally dependent, this ondition is su�ient for the stability, but notneessary. The rational dependane of the oe�ients is not a ontinuous property, whih somehow explainswhat happens. As a typial example, one an hek that the system
x(t) =

3

4
x(t− 1)− 3

4
x(t− 2)is stable. But, sine 3/4 + 3/4 > 1, one an see that the stability is lost by arbitrary little perturbations ofthe delays. Almost all the systems of the form

x(t) =
3

4
x(t− 1)− 3

4
x(t− 2− ǫ) ,are unstable, for example ǫ = π/100 gives an unstable system. Two remarks an now be done. The �rstone is that Max-plus linear systems are also di�erene equations. Suh systems are obtained as algebraimodels of timed marked graphs, a speial lass of Petri nets, where the delays are assoiated to the edges of anoriented graph, they orrespond to the minimal time to ross this edges. As it is well known (see for instane[5℄ or [6℄), the asymptoti behaviour of suh a graph is given by the eigenvalue, in the Max-Plus sene, ofthe orresponding matrix. This eigenvalue an be expressed analitially as the maximum mean weight of theelementary iruits of the graph. This quantity depends ontinuously on the parameters of the graph, that arethe delays and some oe�ients alled initial marks. The asymptoti behaviour of Max-Plus linear systemsdo not depend on the algebrai dependane of the delays, at the ontrary of usual di�erene equations. Ourseond remark, whih now follows, in some sense explains that the di�erene of behaviour between Max-Plussystems and usual di�erene equations is not a paradox. In many appliations, the oe�ients ak of our basiequation are positive. Hene the onsidered equation is alled a positive di�erene equation. We an showthat the zeros of the harateristi equation of a positive di�erene equation ontinuously depends on theparameters ak and βk. In partiular for these systems too, the algebrai dependane of the delays does notthe matter, and in every ase the system is stable if and only if the ondition above is satis�ed, the sum ofthe oe�ients ak is less than 1. Sine the ondition is not delay dependant, it is independant to variationsof the delay, and one therefore says that the stability is robust. To show this result, we denote µ the uniquereal root of the equation

1−
ν∑

k=1

ake−βkµ .As shown in [2℄, µ is an upper bound of the real parts of the zeros of the above harateristi equation. If inaddition the oe�ients ak are positive, one an show that µ is a zero of the harateristi equation, whihleads to the onlusion. Thanks to Perron-Frobenius theorem, a similar result an be desribed in the ase ofmultivariable positive di�erene equations.[1℄ D. Henry, Linear autonomous neutral funtional di�erential equations, J. Di�erential equations, vol.15,106-128, 1974.[2℄ C. E. Avellar and J. K. Hale, On the zeros of exponentials polynomials, Journal of Mathematial Analysisand Appliations, vol. 73, 434-452, 1980.[3℄ V. Kolmanovski and V.R. Nosov, Stability of funtional di�erential equations, Aademi Press, London,1986.[4℄ J.K. Hale and S.M. Verduyn Lunel, Introdution to funtional di�erential equations, Springer Verlag, NewYork, 1993.[5℄ M. Gondran, M. Minoux and S. Vajda, Graphs and Algorithms, John Wiley and Sons, 1984.[6℄ F. Baelli, G. Cohen, G.J. Olsder and J.P. Quadrat. Synhronization and Linearity. An Algebra forDisrete Event Systems. Wiley, 1992.(with M. Di Loreto)
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Mahado, Silvia, Ponti�ia Universidade Catolia de São Paulo, São Paulo, Brasil[CT, Mon. 16:55, Room 2℄GPEA's researhes about the meta resoures in teahing and learning the notion of basis of avetor spaeSine the late 90's we have been researhing the development of the notion of basis of a vetor spae in our�rst Linear Algebra ourse. This onept was hosen to be explored in our investigations beause it has anessential role in this theme. Robert e Robinet (1993) name meta mathematis something that is said or writtenwhen information is given about the mathematial funtioning and the use of its onepts, that is when wetalk ABOUT Mathematis, beyond the stritly mathematial. To avoid onfusion about the meaning of theterm meta mathematis, utilized in Literature under di�erent meanings, we adopted the term meta resouresto design what the authors all meta mathematis. A meta resoure an beame a lever to the studentwhen he is learning about a mathematial notion. When a meta resoure is apable of beoming a lever tothe understanding of the desired mathematial onept, Robert and Robinet all it meta lever. We shouldalso highlight the importane given by Dorier (1997) to this resoure when he suggests that one of the mostimportant axis to be investigated in the learning and teahing of Linear Algebra is about the use of meta leverand about the evaluation of its real e�ets on learning. We interpret the teaher's speeh or the presentationof a theme in the textbook, as meta lever, in ases when there are information in it able to make the studentthink about his own knowledge, his mistakes, his proedures, helping him to understand a new mathematialnotion. We onsider not only the teaher's speeh, but also any ativity proposed and/or elaborated by him,that favors the students' omprehension about a notion or a topi, suh as meta lever. Some papers writtenseeking to answer the question �What is the role of the meta resoures in the learning of the notion of basisin Linear Algebra?� are next. Considering the statement made by Chevallard (1991) about the lak of theteaher's in�uene on didatis transposition, Behaj and Arsa (1998) wrote a paper where they disussedthe size of the in�uene that di�erent Algebra teahers have on didatis transposition in their ourses. Theonlusion of this paper ontested Chevallard's statement by showing that eah teaher has his point of viewon the best way to write a learning text, what brings di�erenes even between two ourses that follow thesame (teahing) plan. (BEHAJ, A ARSAC, G., p. 362). This investigation and the analysis made by theauthors revealed that eah teaher's autonomy (to prepare the lass and to develop them) hanges aordingto the amount of dependene of the textbook and to his researh ativities. Knowing that not every universityteaher researhes Algebra-related subjets and that many of them only use textbooks, Araújo (2002) analyzedthe development of the basis notion in three of the most utilized textbooks in traditional universities. Theauthor ame to the onlusion that there are few meta resoures able to beome meta levers to the student inthose books. BEHAJ and ARSAC's onsiderations about the teaher's interferene in didatial transpositionsuggested that Padredi (2003) investigated whih meta resoures about basis emerge from the 6 interviewedAlgebra teahers' speeh. Padredi utilized three priniples that Harel (2000) onsiders neessary to learnand teah Linear Algebra to elaborate the sript and to analyze the interviews. Those priniples are thoseof onreteness, neessity and generalizibility. The author disovered that the teahers showed many metaresoures able to beome meta lever when learning basis notion. Barbosa de Oliveira (2005), faing thestatement above, observed the lasses of a Linear Algebra teaher lightening the meta resoures utilized inthe development of the basis notion and heking, by using interviews, with whih students of their lass theybeame meta levers. This way, the researhes already �nished and the ones still in proess point some resultsthat evidene the role of the meta resoures in learning the basis notion in Linear Algebra.ReferenesARAUJO, C. V. B. A meta matemátia no livro didátio de Álgebra Linear. Dissertação de Mestrado (Pro-grama de Eduação Matemátia) : Pontifíia Universidade Católia de São Paulo. 2002.BARBOSA de OLIVEIRA, L.C. Como funionam os reursos meta em aula de Álgebra Linear? Dissertaçãode Mestrado (Programa de Eduação Matemátia) : Pontifíia Universidade Católia de São Paulo. 2005.BEHAJ, A.; ARSAC, G La oneption d'un ours d'Algèbre Linèaire . Reherhes en Didatique des Mathé-matiques, v.18, no 3, pp. 333-370, 1998.CHEVALLARD, Y. La transposition didatique, du savoir savant au savoir enseigné. Reed. 1991. La PenséeSauvage. Grenoble. 1991. 41



DORIER, J. L. L'Enseignement de L'Algebre Linéaire en Question. La Pensée Sauvage. Grenoble. 1997.HAREL, G. Three Priniples of Learning and Teahing Mathematis, Chapter 5, On the Teahing of LinearAlgebra. Ed. DORIER. Kluwer. 2000.PADREDI, Z.L.N. As alavanas meta no disurso do professor de Algebra Linear. Dissertação de Mestrado(Programa de Eduação Matemátia) : Pontifíia Universidade Católia de São Paulo. 2002.ROBERT, A.; ROBINET, J. Prise en ompte du meta en didatique des Mathématiques. In Cahier DIDIREM.V.21, Ed. IREM. Paris. 1993.(with Bianhini, B. L. and Maranhão, M. C. S. A.)Marai, Mirko, Dept of Mathematis and CSCI, Siena University, Siena, Italy[MS4, Mon. 11:35, Room 1℄Basi notions of Vetor Spae Theory: students' models and oneptionsCarlson (1993) uses the image of the fog rolling in to desribe the onfusion and disorientation whih his stu-dents experiene when getting to the basi notions of Vetor Spae Theory (VST). There is truly a widespreadsense of the inadequay of the teahing of Linear Algebra. On aount of that ommon pereption and of theimportane of Linear Algebra as a prerequisite for a number of disiplines (math, siene, engineering,...), inthe last twenty years several studies were arried out on Linear Algebra eduation. Those studies broughtundeniable progresses for understanding students' di�ulties in Linear Algebra. As Dorier and Sierpinskae�etively synthesized in their literature survey (2001), three di�erent kinds of soures of students' di�ultiesin Linear Algebra espeially emerge from the studies on that topis:1. the fat that Linear Algebra teahing is haraterized by an axiomati approah, whih is pereived bystudents as super�uous and meaningless;2. the fat that Linear Algebra is haraterized by the ohabitation of di�erent languages, systems ofrepresentations, modes of desription;3. the fat that oping with those features requires the development of theoretial thinking and ognitive�exibilityReently more studies were arried out, whih in our opinion still �t well Dorier and Sierpinska's synthesis.In this talk I will fous on some aspets of students' di�ulties in vetor spae theory (VST), drawn from mydotorate researh projet. That projet was meant to investigate graduate and undergraduate students' errorsand di�ulties in VST. Through that work I intended to ontribute to Linear Algebra Eduation researh�eld, fousing on ognitive di�ulties related to spei� VST notions rather than to general features of LinearAlgebra: a seemingly less explored path.The study involved 15 (graduate or undergraduate) students in mathematis, presented with two or threedi�erent VST problems to be solved in individual sessions. The methodology adopted was that of the linialinterview (Ginsburg, 1981). The study highlighted a number of students' di�ulties related to the notionsof linear ombination, linear dependene/independene, dimension and spanning set. The di�ults, errorsand empasses emerged were analysed through the lenses of di�erent theoretial frameworks: the theory oftait intuive models (Fishbein, 1987), Sfard's proess-objet duality theory (Sfard, 1991) and the k model(Balahe�, 1995). The di�erent analyses lead to formulate hypotheses, whih aount for a variety of students'di�ulties. Though not antithetial to eah other, those analyses are diversi�ed, put into evidene di�erentaspets from di�erent perspetives. In this talk I brie�y present the results of those analyses and a �rst tentativeintegrating analysis, ombining di�erent hints and perspetives provided by the frameworks mentioned above.More spei�ally, that attempt lead to the formulation of the hypothesis that many di�ults experiened bystudents are onsistent with the possible ativation of an intuitive model of �onstrution" related to basinotion of VST. In the talk we will better speify that hypothesis showing how it ould ontribute to betterorganize and explain students' doumented di�ulties.42



ReferenesBalaheff N., 1995; Coneption, onnaissane et onept, Grenier D. (ed.) Didatique et tehnologiesognitives en mathématiques, séminaires 1994-1995, pp. 219-244, Grenoble: Université Joseph Fourier.Carlson D., 1993; Teahing linear algebra: must the fog always roll in?, College Mathematis Journal,vol. 24, n. 1; pp. 29-40.Dorier J.-L., Sierpinska A., 2001; Researh into the teahing and learning of linear algebra, Holton D.(ed.) The Teahing and Learning in Mathematis at University Level- An ICMI Study, Kluwer Aad.Publ., The Netherlands, pp. 255-273.Fishbein E., 1987; Intuition in siene and mathematis, D. Reidel Publishing Company, Dordreht, Hol-land.Ginsburg H., 1981; The Clinial Interview in Psyhologial Researh on Mathematial Thinking: Aims,Rationales, Tehniques. For the Learning of Mathematis, v. 1, 3 pp. 4-11.Sfard A., 1991; On the dual nature of mathematial oneptions: re�etions on proesses and objets asdi�erente sides of the same oin, Eduational Studies in Mathematis, v. 22, pp. 1-36.Marovt, Janko, Institute of Mathematis, Physis and Mehanis, Ljubljana, Slovenia[CT, Thu. 11:00, Room 4℄Homomorphisms of matrix semigroups over division rings from dimension two to threeLet D be an arbitrary division ring and Mn(D) the multipliative semigroup of all n×n matries over D. Wewill desribe the general form of non-degenerate homomorphisms from M2(D) to M3(D).(with Gregor Dolinar)Marques, Maria-da-Graça, University of Algarve and CELC, Faro, Portugal[CT, Thu. 16:55, Room 4℄Some onditions for the ommutativity of matrix patternsA matrix pattern P is an array of ∗'s and 0's. A real matrix A = (ai,j) belongs to pattern P if its dimensionsagree with those of P and ai,j 6= 0 if and only if the i, j entry of P is a ∗. We say that two n-by-n patterns
P and Q ommute (or allow ommutativity) if there exist matries A ∈ P and B ∈ Q that ommute, ie
AB = BA. In [1℄ some neessary and some su�ient onditions are given for the ommutativity with the full(all ∗'s) pattern F . In this talk we disuss the neessary onditions in [1℄ and present some ases where theyare su�ient.[1℄ C. R. Johnson and M. G. Marques, Patterns of ommutativity: the ommutant of the full pattern, EletroniJournal of Linear Algebra, 14, 2005.(with C. R. Johnson)Martínez, José-Javier, Universidad de Alalá, Alalá de Henares, Spain[CT, Tue. 18:35, Room 4℄ Polynomial regression in the Bernstein basis
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The problem of polynomial regression in whih the usual monomial basis is replaed by the Bernstein basisis onsidered. The oe�ient matrix A of the overdetermined system to be solved in the least-squares sense isthen a retangular Bernstein-Vandermonde matrix. In order to use the method based on the QR deomposi-tion whih was developed in the elebrated paper [1℄, the �rst stage will onsist of omputing the bidiagonaldeomposition of the oe�ient matrix A by means of an extension to the retangular ase of the algorithmpresented in [3℄. Starting from that bidiagonal deomposition, an algorithm for obtaining the QR deompo-sition of A due to Koev [2℄ is then applied. Finally, a triangular system is solved by using the bidiagonaldeomposition of the R-fator of A. Some numerial experiments showing the behaviour of our approah areinluded.[1℄ G. Golub: Numerial methods for solving linear least squares problems. Numerishe Mathematik 7,206-216 (1965).[2℄ P. Koev: Aurate omputations with totally nonnegative matries. SIAM J. Matrix Anal. Appl. 29(3),731-751 (2007).[3℄ A. Maro, J.-J. Martínez: A fast and aurate algorithm for solving Bernstein-Vandermonde linearsystems. Linear Algebra Appl. 422, 616-628 (2007)(with Ana Maro)Martins, Enide, Centre for Researh on Optimization and Control (CEOC), Aveiro, Portugal[CT, Fri. 11:00, Room 3℄On the spetra of some graphs like weighted rooted treesLet G be a weighted rooted graph of k levels suh that, for j ∈ {2, . . . , k}1. eah vertex at level j is adjaent to one vertex at level j− 1 and all edges joining a vertex at level j witha vertex at level j − 1 have the same weight, where the weight is a positive real number.2. if two verties at level j are adjaent then they are adjaent to the same vertex at level j − 1 and alledges joining two verties at level j have the same weight.3. two verties at level j have the same degree.4. there is not a vertex at level j adjaent to others two verties at the same level.In this talk we give a omplete haraterization of the eigenvalues of the Laplaian matrix of G (analogousharaterization an be done for the adjaeny matrix of G)). By appliation of the these results, we derive anupper bound on the largest eigenvalue of a graph de�ned by a weighted tree and a weigthed triangle attahed,by one of its verties, to a pendant vertex of the tree.(with Rosário Fernandes and Helena Gomes)Martin, William, North Dakota State University, Fargo, USA[MS4, Tue. 18:10, Room 1℄Integrating learning theories and appliation-based modules in teahing linear algebraThe researh team of The Linear Algebra Projet developed and implemented a urriulum and a pedagogyfor parallel ourses in (a) linear algebra and (b) learning theory as applied to the study of mathematis withan emphasis on linear algebra. The purpose of the ongoing researh, partially funded by the National SieneFoundation, is to investigate how the parallel study of learning theories and advaned mathematis in�uenesthe development of thinking of individuals in both domains. The researhers found that the partiular synergya�orded by the parallel study of math and learning theory promoted, in some students, a rih understandingof both domains and that had a mutually reinforing e�et. Furthermore, there is evidene that the deeper44



insights will ontribute to more e�etive instrution by those who beome high shool math teahers and,onsequently, better learning by their students. The ourses developed were appropriate for mathematis ma-jors, pre-servie seondary mathematis teahers, and pratiing mathematis teahers. The learning seminarfoused most heavily on onstrutivist theories, although it also examined soio-ultural and historial per-spetives (von Glaserfeld, 1989; Vygotsky, 1978, 1986). A partiular theory, Ation-Proess-Objet-Shema(APOS) (Asiala et al., 1996), was emphasized and examined through the lens of studying linear algebra.APOS has been used in a variety of studies fousing on student understanding of undergraduate mathematis.The linear algebra ourses inlude the standard set of undergraduate topis. This paper reports the resultsof the learning theory seminar and its e�ets on students who were simultaneously enrolled in linear algebraand students who had previously ompleted linear algebra and outlines how prior researh has in�uened thefuture diretion of the projet.(with S. Loh, L. Cooley, M. Meagher, S. Dexter and D. Vidakovi)MDonald, Judith, Washington State University, Pullman, WA, USA[MS8, Mon. 16:55, Room 1℄Nonnegative and Eventually Nonnegative MatriesI will disuss the interplay between the properties of nonnegative and eventually nonnegative matries, andthe role that the inverse eigenvalue problem plays in this relationship.MEneaney, William, University of California, San Diego, La Jolla, United States[MS7, Mon. 11:35, Room 2℄ Max-Plus Bases, Cornies and PruningIn the development of omputationally e�ient algorithms for ontrol of sensor tasking, one is faed witha ertain omputational-omplexity growth that must be attenuated. At eah step of these algorithms, onewould like to �nd a redued-omplexity representation of the urrent solution. These representations take theform of max-plus sums of a�ne funtionals. Some important max-plus vetor spaes, or moduloids, are spaesof onvex and semionvex funtions. In these ases, elements of the spaes may be represented as ountablemax-plus linear ombinations of linear (onvex-funtions spaes) and quadrati (semionvex-funtions spaes)funtions. The partial sums naturally approximate the elements from below. In the problem at hand, we arein the ase of spaes of onvex funtions. One solution to the omplexity-redution problem would be simplyto begin generating the oe�ients in max-plus basis expansions, but one is still left with the problem of whihbasis funtions to hoose. More arefully, we see that the problem at hand is as follows: Given an elementof the spae of onvex funtions, taking the form of a max-plus sum of M linear funtions, and given some�xed, allowable number of approximating a�ne funtions, say N < M , �nd the best N a�ne funtions toapproximate the original element. Of ourse, there is some freedom in the metri by whih we determine whata good approximation is. We hoose a metri, say a weighted L1 integral, whih is onvex in a ertain sense.One is optimizing this ost funtional subjet to the onstraint the the �nite, partial sum, is an approximationfrom below. The onstraint set takes the form of the union of downward pointing ones over the onvex hull ofoe�ients de�ning the original element, a onstraint set termed a ornie here. This partiular problem formleads to a solution where the optimal N a�ne funtionals are a subset of the set whih de�nes the originalelement, that is, pruning is optimal. The problem beomes ombinatorial in nature. This struture is notgeneral, and it is not lear whih lasses of problems may also take this speial form.M. Dopio, Froilán, Universidad Carlos III, Madrid, Spain[Plenary, Tue. 15:30�16:25℄Impliit Jaobi algorithms for the symmetri eigenproblem45



The Jaobi algorithm for omputing the eigenvalues and eigenvetors of a symmetri matrix is one of theearliest methods in numerial analysis, dating to 1846. It was the standard proedure for solving densesymmetri eigenvalue problems before the QR algorithm was developed. The Jaobi method is muh slowerthan QR or than any other algorithm based on previous redution to tridiagonal form, and, as a onsequene,it is not used in pratie. However, in the last twenty years the Jaobi algorithm has reeived onsiderableattention beause it an ompute the eigenvalues and eigenvetors of many types of strutured matries withmuh more auray than other algorithms. The essential idea is to ompute �rst an aurate fatorization ofthe matrix A, and then to apply the Jaobi algorithm impliitly on the fators. The theoretial property thatsupports this approah is that a fatorization A = XDXT , where X is well onditioned and D is diagonaland nonsingular, determines very aurately the eigenvalues and eigenvetors of A, i.e., small omponentwiseperturbations of D and small normwise perturbations of X produe small relative variations in the eigenvaluesof A, and small variations in the eigenvetors with respet the eigenvalue relative gap. The purpose of thistalk is to present a uni�ed overview on impliit Jaobi algorithms, on lasses of symmetri matries for whihthey work, on the perturbation results that are needed to prove the auray of the omputed eigenvalues andeigenvetors, and, �nally, to present very reent developments in this area that inlude a new, simple, andsatisfatory algorithm for symmetri inde�nite matries.Mead, Jodi, Boise State University, Boise, USA[MS3, Fri. 11:50, Room 2℄Calulating Weights in Least Squares Estimation Using the Chi-squared MethodWe will desribe the hi-squared method for parameter estimation reently developed by Mead (2007) andMead and Renaut (submitted). The hi-squared urve method amounts to solving a weighted least squaresproblem, where the weights are found by ensuring the parameter estimates satisfy the hi-squared test. Thismethod is onsiderably more e�ient, and as aurate as traditional L-urve and ross-orrelation methods forparameter estimation. We will show results from Hydrology where data error is alulated by the hi-squaredmethod, and parameter estimates are found within a priori data unertainty ranges.(with Rosemary Renaut, ASU)Meerbergen, Karl, K.U. Leuven, Heverlee, Belgium[MS2, Thu. 17:45, Room 1℄Reyling Ritz vetors in the parameterized Lanzos methodThe solution of the parameterized system
Ax = f with A = K − ω2M (16)with K real symmetri, and M symmetri positive de�nite arises in appliations, inluding strutural engi-neering and aoustis. The parameter ω is often the frequeny and lies in the frequeny interval where thenumerial model is valid. The solution x is alled the frequeny response funtion. The traditional method inengineering is modal superposition where (16) is projeted on well seleted eigenvetors assoiated with theeigenvalues of

Ku = λMu . (17)This method is usually experiened as very e�ient when the eigenvetors and eigenvalues are available, sine(16) is transformed to a diagonal linear system, but it requires the omputation of a signi�ant amount ofeigenvetors. E�ient methods for solving (16) have been developed over the last deade, in the ontext ofiterative linear system solvers for parameterized problems [5℄ [4℄, and the Padé via Lanzos method in theontext of modelredution [3℄ [1℄ [2℄. In this talk, we disuss the use of Ritz vetors to preonditioning theLanzos method for solving the parameterized system (16). We apply the method for solving (16) with manyright-hand sides simultaneously. 46



Referenes[1℄ Z. Bai and R. Freund. A symmetri band Lanzos proess based on oupled reurrenes and some appli-ations. Numerial Analysis Manusript 00-8-04, Bell Laboratories, Murray Hill, New Jersey, 2000.[2℄ Z. Bai and R. Freund. A partial Padé-via-Lanzos method for redued-order modeling. Linear Alg. Appl.,332�334:141�166, 2001.[3℄ P. Feldman and R. W. Freund. E�ient linear iruit analysis by Padé approximation via the Lanzosproess. IEEE Trans. Computer-Aided Design, CAD-14:639�649, 1995.[4℄ K. Meerbergen. The solution of parametrized symmetri linear systems. SIAM J. Matrix Anal. Appl.,24(4):1038�1059, 2003.[5℄ V. Simonini and F. Perotti. On the numerial solution of (λ2A + λB + C)x = b and appliation tostrutural dynamis. SIAM Journal on Sienti� Computing, 23(6):1876�1898, 2002.(with Zhaojun Bai)Meini, Beatrie, Dipartimento di Matematia, Universitá di Pisa, Pisa, Italy[MS6, Tue. 17:20, Room 2℄From algebrai Riati equations to unilateral quadrati matrix equations: old and newalgorithmsThe problem of reduing an algebrai Riati equation XCX −AX −XD+B = 0 to a unilateral quadratimatrix equation (UQME) of the kind PX2 + QX + R = 0 is analyzed. New redutions are introduedwhih enable one to prove some theoretial and omputational properties. In partiular we show that thestruture preserving doubling algorithm of B.D.O. Anderson [Internat. J. Control, 1978℄ is in fat the yliredution algorithm of Hokney [J. Asso. Comput. Mah., 1965℄ and Buzbee, Golub, Nielson [SIAM J. Nu-mer. Anal., 1970℄, applied to a suitable UQME. A new algorithm obtained by omplementing our redutionswith the shrink-and-shift tehnique of Ramaswami is presented. Finally, faster algorithms whih require somenon-singularity onditions, are designed. The non-singularity restrition is relaxed by introduing a suitablesimilarity transformation of the Hamiltonian.(with Bini, Dario and Poloni, Federio)Mena, Hermann, Esuela Politénia Naional, Quito, Euador[MS6, Tue. 17:45, Room 2℄Exponential Integrators for Solving Large-Sale Di�erential Riati EquationsThe di�erential Riati equation (DRE) arises in several appliations, espeially in ontrol theory. Partialdi�erential equations (PDEs) onstraint optimization problems often lead to formulations as abstrat Cauhyproblems. Imposing a quadrati ost funtional, the resulting optimal ontrol is solved by a feedbak ontrolwhere the feedbak operator is given in terms of an operator-valued DRE. Hene, in order to apply suh afeedbak ontrol strategy to PDE ontrol, we need to solve the large-sale DREs resulting from a spatial semi-disretization. There is a variety of methods to solve DREs. One ommon approah is based on a linearizationthat transforms the DRE into a linear Hamiltonian system of �rst-order matrix di�erential equations. Theanalyti solution of this system is given in terms of the exponential of a 2nx2n Hamiltonian matrix. In thistalk, we investigate the use of sympleti Krylov subspae methods to approximate the ation of this operatorand thereby solve the DRE. Numerial examples illustrating the performane of the method will be shown.(with Benner, Peter) 47



Merlet, Glenn, CNRS/LIAFA, Paris, Frane[MS7, Tue. 17:45, Room 3℄Semi-group of matries ating on the max-plus projetive spaeWe investigate the ation of a semi-group S of matries on the max-plus projetive spae. If all matries in
S are strongly regular (that is, their image has maximal dimension), and the semi-group is primitive (that isone of its elements has only �nite entries), then there is a point in the projetive spae, whih is �xed by everymatrix in the semi-group. Moreover, S ats on ∩M∈SIm(M), like a �nite group of a�ne isometries. If thesemi-group ontains an element with projetively bounded image, then it also ontains some linear projetors.Then, for any projetor P with minimal tropial rank, there is a point x whose orbit is mapped on x by
P . Moreover, {PM : M ∈ S} ats on ∩M∈SIm(PM), like a �nite group of isometries for the supremumnorm. We dedue from this result some limit theorems for max-plus produts of random matries, whih wereonly known under the so-alled memory-loss property. These results are useful for performane evaluation ofmax-plus linear disrete event systems.Mikkelson, Rana, Iowa State University, Ames, IA, United States of Ameria[CT, Thu. 17:20, Room 3℄ Minimum Rank of Graphs with LoopsThe minimum rank problem has been studied primarily for undireted simple graphs. We extend ut vertexredution for �nding the minimum rank of an undireted simple graph, whih is known to be valid over any�eld, to undireted graphs with loops, where it is valid over any �eld that is not Z2. We then obtain the resultthat minimum rank of a tree with loops is �eld independent exept for Z2.Milligan, Thomas, University of Central Oklahoma, Edmond, OK, USA[CT, Fri. 15:55, Room 4℄ On Eulidean Squared Distane MatriesGiven n points in Eulidean spae, x1, . . . , xn, a Eulidean Squared Distane (ESD) matrix is a matrix whoseentries are of the form (||xi − xj ||2). The study of distane matries is useful in omputational hemistry andstrutural moleular biology. We show some results arising from di�erent haraterizations, inluding faialstruture and linear preservers.(with Chi-Kwong Li and Mihael Trossett)Mithell, Lon, Virginia Commonwealth University, Rihmond, United States[CT, Thu. 18:10, Room 3℄Orthogonal Removal of Verties and Minimum Semide�nite RankA vetor representation of a graph is an assignment of a vetor in C

n to eah vertex so that nonadjaent vertiesare represented by orthogonal vetors and verties adjaent by a single edge are represented by nonorthogonalvetors. The least n for whih a vetor representation an be found is the minimum semide�nite rank (msr)of a graph. While the msr of an indued subgraph provides a lower bound for the msr of a graph, a minimalvetor representation of a graph need not inlude a minimal vetor representation of a partiular subgraph.Orthogonally removing a vertex represented by a vetor ~v by orthogonally projeting eah vetor of a vetorrepresentation on the orthogonal omplement of the span of ~v results in a vetor representation of a relatedgraph with order dereased by one. We will disuss some of the possibilities and limitations of getting minimalvetor representations from orthogonal removal.(with Sivaram Narayan) 48



Moro, Julio, Universidad Carlos III de Madrid, Leganés, Spain[MS2, Fri. 12:15, Room 1℄Strutured Holder ondition numbers for eigenvalues under fully nongeneri perturbationsLet λ be an eigenvalue of a matrix or operator A. The ondition number κ(A, λ) measures the sensitivity of λwith respet to arbitrary perturbations in A. If A belongs to some relevant lass, say S, of strutured operators,one an de�ne the strutured ondition number κ(A, λ; S), whih measures the sensitivity of λ to perturbationswithin the set S. Whenever the strutured ondition number is muh smaller than the unstrutured one, thepossibility opens for a struture-preserving spetral algorithm to be more aurate than a onventional one.For multiple, possibly defetive, eigenvalues the ondition number is usually de�ned as a pair of nonnegativenumbers, with the �rst omponent re�eting the worst-ase asymptoti order whih is to be expeted fromthe perturbations in the eigenvalue. In this talk we adress the ase when this asymptoti order di�ers forstrutured and for unstrutured perturbations: if we denote κ(A, λ) = (n, α) and κ(A, λ; S) = (nS, αS), weonsider the ase when n 6= nS, i.e., when strutured perturbations indue a qualitatively di�erent perturbationbehavior than unstrutured ones. If this happens, we say that the lass S of perturbations is fully nongenerifor λ. On one hand, we haraterize full nongeneriity in terms of the eigenvetor matries orresponding to λ,and it is shown that, for linear strutures, this is related to the so-alled skew-struture assoiated with S. Onthe other hand, we make use of Newton polygon tehniques to obtain expliit formulas for strutured onditionnumbers in the fully nongeneri ase: both the asymptoti order and the largest possible leading oe�ientare identi�ed in the asymptoti expansion of perturbed eigenvalues for fully nongeneri perturbations.(with María J. Peláez)Morris, DeAnne, Washington State University, Pullman, USA[MS8, Tue. 11:00, Room 2℄Jordan forms orresponding to nonnegative and eventually nonnegative matriesWe give neessary and su�ient onditions for a set of Jordan bloks to orrespond to the peripheral spetrumof a nonnegative matrix. For eah eigenvalue, λ, the λ-level harateristi (with respet to the spetralradius) is de�ned. The neessary and su�ient onditions inlude a requirement that the λ-level harateristiis majorized by the λ-height harateristi. An algorithm whih determines whether or not a multiset ofJordan bloks orresponds to the peripheral spetrum of a nonnegative matrix will be disussed. We alsoo�er neessary and su�ient onditions for a multiset of Jordan bloks to orrespond to the spetrum of aneventually nonnegative matrix.(with MDonald, Judith)Moura, Ana, Instituto Superior Ténio, UTL, Lisbon, Portugal[MS4, Wed. 10:35, Room 2℄Skills, Conepts and Models in a Linear Algebra CourseWe present an approah to the organization of a Linear Algebra Course for an engineering degree based on thebalane between three pillars: Conepts, Models and Skills. Algorithmi skills is what the students are morefamiliar with. Conepts is what we mathematiians are used to work in our fundamental researh. Models iswhat drives onepts and needs algorithms to solve, so an be regarded both as a motivator, and as the mainobjetive we want the future engineer to learn in the end. We want them to be able to look at a problem,reate a mathematial model for it, oneptualize and analyze the model, and �nally to �nd and interpret thepossible solutions.Instituto Superior Ténio (IST) is the main Engineering shool in Portugal. It has around 10000 under-graduate students and 2000 graduate students, in around 21 Majors in Engineering and related topis. The49



Linear Algebra ourse is a �rst semester, �rst year undergraduate ourse for all students exept Arhiteture.Students ame with a bakground on one variable alulus and basi geometry. In high shool in Portugal,mathematis training emphasis is on algorithmi skills, with no stress on the di�erene between postulates anddeduted results in Mathematis. The students are given �fats" and learn to use them to alulate things.Even this is not well done. With an exessive reliane on alulators, students atually forget simple algebrarules, like distributive property and fration simpli�ation.The Linear Algebra traditional approah in IST has until today been foused on teahing onepts, axiomsand propositions, with their proofs. On the other hand, students are assessed mainly by exerise resolutionswith algorithms (e.g. �nding eigenvalues and ei-genvetors, alulating determinants, orthogonalizing basis)with usually only less than 25% of the assessment grade oming from onepts. The result is that the studentsdo not learn the onepts, and thus an only apply the algorithms if they have seen a similar problem solvedbefore, and so know the �reipe".As pointed out by Shoenfeld (1998), if before the seventies and eighties the main fous was on theknowledge base - fats, proedures and oneptual understanding, now in order to be suessful, a mathematisprogram must inlude problem solving strategies, metaognition, beliefs, and mathematial praties. In thisontext, the authors believe that besides the onepts and algorithms, is very important to introdue anotherpillar, namely models . Mathematis in its history was always inspired by the real world and its properties.Many results in Mathematis were obtained while trying to solve a real world problem, its onepts derivedfrom abstrating regularities found in nature. Models serve as a motivator for both the onepts (the studentan see that the onept is useful beause it an represent and abstrat some existing entity/relation in nature)and the algorithms (we are not just alulating abstrat quantities, they are possible solutions to a problem).In short, models reate the �intelletual" need for both the onepts and proedures.Linear Algebra is an ideal �eld for this exerise, beause the invention of the omputer inreased theimportane of Linear Algebra as an engineering tool vis a vis Calulus. Unfortunately, at IST as at otherleading Engineering shools around the world, too muh importane is still given to Calulus (Strang, 2002).We, for instane, introdue in our Linear Algebra Course stohasti matries as simple models for di�erentphenomena, like migrations, voter turnouts, weather predition, and Leontief prodution models. For thispropose we highly reommend students to read the orresponding setions in books of Linear Algebra withappliations by Anton and Rorres (2005) and Lay (2003). The students understand the power of Mathematis,beause they an see that one mathematial onept, for instane eigenvalues and eigenvetors of a givenstohasti matrix an represent various phenomena, and that learning to solve the abstrat problem will allowthem to understand and make preditions on all those phenomena. All assessments inlude at least onephenomenon for the students to model and/or a model for them to analyze, �nd solutions and interpret.Interestingly, the students initial reation tends to be negative. They are used to om-partmentalizeknowledge, and are not expeting to have to talk about population growth in a Linear Algebra lass. Butalong the ourse, they get used to the need of applying onepts and proedures to given models. They gettraining in analyzing real world problems using Mathematis. They evolve in their ways of understanding andthinking (Harel, 2007) of mathematial solutions as having more than just algebrai meaning, whih is one ofthe most important objetives a mathematis ourse should give them.ReferenesAnton, H., and Rorres C. (2005). Elementary Linear Algebra-Appliations Version. New York, John Wileyand Sons, In. (9th Edition).Harel G. (In Press). What is Mathematis? A Pedagogial Answer to a Philosophial Question. In R.B. Gold and R. Simons (Eds.), Current Issues in the Philosophy of Mathematis From the Perspetive ofMathematiians, Mathematial Amerian Assoiation.Lay, D. C. (2003). Linear Algebra and its Appliation. New York, Addison Wesley (3rd Edition).Shoenfeld A. H. (1998). Toward a Theory of Teahing-in-ontext. In Issues in Eduation, Volume 4, No 1,pp. 1-94.Strang G. (2002). Too Muh Calulus. SIAM Linear Algebra Ativity Group Newsletter (2002).(with Santos, P. A.) 50



Nagy, James, Emory University, Atlanta, USA[Plenary, Wed. 9:10�10:05℄ Kroneker Produts in Imaging SienesLinear algebra and matrix analysis are very important in the imaging sienes. This should not be surprisingsine digital images are typially represented as arrays of pixel values; that is, as matries. Due to advanesin tehnology, the development of new imaging devies, and the desire to obtain images with ever higherresolution, linear algebra researh in image proessing is very ative. In this talk we desribe how Kroneker andHadamard produts arise naturally in many imaging appliations, and how their properties an be exploitedwhen omputing solutions of very di�ult linear algebra problems.Nagy, James, Emory University, Atlanta, USA[MS3, Thu. 17:45, Room 2℄Lanzos Hybrid Regularization for Image Proessing AppliationsIll-posed problems arise in many image proessing appliations, inluding mirosopy, mediine and astronomy.Iterative methods are typially reommended for these large sale problems, but they an be di�ult to usein pratie. For example, it may be di�ult to determine an appropriate stopping riteria for fast algorithms,suh as the onjugate gradient method; noise ontaminates the iterates very quikly, so an impreise stoppingriteria an lead to poor reonstrutions. Lanzos based hybrid methods have been proposed to slow theintrodution of noise in the iterates. In this talk we disuss the behavior of Lanzos based hybrid methodsfor large sale problems in image proessing. In partiular, we disuss how to inorporate regularization andonstraints, and how to hoose regularization parameters during the iteration proess.(with Julianne Chung and Dianne O'Leary)Narayan, Sivaram, Central Mihigan University, Mount Pleasant, Mihigan 48859, USA[CT, Fri. 12:15, Room 3℄Linearly Independent Verties and Minimum Semide�nite RankA vetor representation of a graph is an assignment of a vetor in Cn to eah vertex so that nonadjaent vertiesare represented by orthogonal vetors and verties adjaent by a single edge are represented by nonorthogonalvetors. The least n for whih a vetor representation an be found is the minimum semide�nite rank ofa graph. We study the minimum semide�nite rank of a graph using vetor representations. For example,rotation of vetor representations by a unitary matrix allows us to �nd the minimum semide�nite rank ofthe join of two graphs and ertain bipartite graphs. We present a su�ient ondition for when the vetorsorresponding to a set of verties of a graph must be linearly independent in any vetor representation of thatgraph, and onjeture that the resulting graph invariant is equal to minimum semide�nite rank.Neumann, Mihael, Department of Mathematis, University of Connetiut, Storrs, USA[MS8, Tue. 11:50, Room 2℄On Optimal Condition Numbers For Markov ChainsLet T = (ti,j) and T̃ = T − E be arbitrary nonnegative, irreduible, stohasti matries orresponding totwo ergodi Markov hains on n states. A funtion κ(·) is alled a ondition number for Markov hains withrespet to the (α, β)�norm pair if ‖π − π̃‖α ≤ κ(T )‖E‖β.Various ondition numbers, partiularly with respet to the (1,∞) and (∞,∞) have been suggested in theliterature by several authors. They were ranked aording to their size by Cho and Meyer in a paper from 2001.In this paper we �rst of all show that what we all the generalized ergodiity oe�ient τp(∗) = supyte=0
‖yt∗‖p

‖y‖1
,51



where e is the n�vetor of all 1's, is the smallest of the ondition numbers of Markov hains with respet tothe (p,∞)�norm pair. We use this result to identify the smallest ondition number of Markov hains amongthe (∞,∞) and (1,∞)�norm pairs. These are, respetively, κ3 and κ6 in the Cho�Meyer list of 8 onditionnumbers.Kirkland has studied κ3(T ). He has shown that κ3(T ) ≥ n−1
2n and he has haraterized the properties oftransition matries for whih equality holds. We prove again that 2κ3(T ) ≤ κ(6) whih appears in the Cho�Meyer paper and we haraterize the transition matries T for whih κ6(T ) = n−1

n . There is only one suhmatrix: T = (Jn − I)/(n− 1). where Jn is the n× n matrix of all 1's. This result demands the developmentof the yli struture of a doubly stohasti matrix with a zero diagonal.Researh supported by NSA Grant No. 06G�232(with Sze, Nung-Sing)Olesky, Dale, University of Vitoria, Vitoria, Canada[MS1, Fri. 15:30, Room 1℄ Group Inverses of Matries with Path GraphsA simple formula for the group inverse of a 2×2 blok matrix with a bipartite digraph is given in terms of theblok matries. This formula is used to give a graph-theoreti desription of the group inverse of an irreduibletridiagonal matrix of odd order with zero diagonal (whih is singular). Relations between the zero/nonzerostrutures of the group inverse and the Moore-Penrose inverse of suh matries are given. An extension of thegraph-theoreti desription of the group inverse to singular matries with tree graphs is onjetured.(with M. Catral and P. van den Driesshe)Olshevsky, Vadim, University of Connetiut, Storrs, USA[CT, Thu. 11:25, Room 4℄Can One Invert a Matrix via Graph Manipulations?In this paper we use �ow graphs to desribe the struture for the inverse polynomial Vandermonde matrix (andto design fast O(n2) algorithms that ompute it). Although all the results an be derived algebraially, here wereveal a onnetion to signal proessing and dedue new inversion formulas via elementary operations on signal�ow graphs for digital �lter strutures. We introdue, for the �rst time, several new �lter strutures (e.g.,quasiseparable �lters, semiseparable �lters, and well-free �lters) that generalize the elebrated Markel-Graystruture, widely used in speeh proessing. No knowledge of system theory (or anything beyond matries)is required, we will start with an elementary 5-minutes tutorial on �ow graphs, and show how their usedramatially simpli�es the derivation of inversion formulas.(with Tom Bella and Pavel Zhlobih)Olshevsky, Vadim, University of Connetiut, Storrs, USA[MS2, Fri. 10:35, Room 1℄Lipshitz stability of anonial Jordan bases of H-selfadjoint matriesWe study Jordan-struture-preserving perturbations of matries selfadjoint in the inde�nite inner produt.The main result is Lipshitz stability of the orresponding so-alled similitude matries. The result an bereformulated as Lipshitz stability, under small perturbations, of anonial Jordan bases (i.e., eigenvetorsand generalized eigenvetors enjoying a ertain �ipped orthonormality relation) of matries selfadjoint in theinde�nite inner produt. The proof relies upon the analysis of small perturbations of invariant subspaes,where the size of a permutation of an invariant subspae is measured using the onepts of a gap and of asemigap.(with Tom Bella and Upendra Prasad) 52



Palma, Alejandro, Instituto de Físia (BUAP), Puebla, Méxio[CT, Thu. 11:50, Room 4℄Solution of the linear time-dependent potential by using a solvable Lie algebra∗The solution of the Shödinger equation for the linear time-dependent potential has been reently the subjetmatter of several publiations. We show in this work that this is one of the few systems whih leads to asolvable Lie algebra. In fat, we onsider a more general potential where the linear time-dependent potentialis only a partiular ase. We �nd the solution by using the well known theorem of Wei-Norman.(with M. Villa, and L. Sandoval)Parraguez, Marela, Ponti�ia Universidad Católia de Valparaíso, Valparaíso, Chile[MS4, Mon. 12:00, Room 1℄ Constrution of a vetor spae shemaFrom a ognitive point of view the vetor spae onept is one that auses many di�ulties for studentsof Linear Algebra. Apart from being abstrat in itself, it has to be onneted with several other abstratonepts in the mind of a student in order to laim that understanding takes plae. In this researh projetour aim is to explain the onstrution of the vetor spae onept from the viewpoint of APOS (Ation �Proess � Objet � Shema) theory. We are also interested in studying the formation and evolution ofthe vetor spae shema and how other onepts suh as linear independene and basis are inorporated intothe students' mathematial world in onnetion with this shema. The methodologial framework of APOStheory requires that the onept in question be analyzed theoretially resulting in a viable map (alled ageneti deomposition) of student learning in terms of mental onstrutions. In our talk we will present apossible geneti deomposition for the onstrution of the vetor spae onept and provide empirial evidenefor spei� mental onstrutions that students make when they are learning this onept. This evidene wasgathered through questionnaires and interviews (designed in line with our geneti deomposition) applied toundergraduate students who were taking a Linear Algebra ourse. These instruments also help in identifyingstudent di�ulties with the vetor spae onept and some related onepts suh as binary operations, axiomsand �elds.(with Oktaç, Asuman)Patriio, Pedro, Departamento de Matemátia, Universidade do Minho, Braga, Portugal[CT, Fri. 11:50, Room 4℄ Some additive results on Drazin InversesOur aim is to investigate the existene of the Drazin inverse (p + q)d of the sum p + q, where p and q areeither ring elements or matries, and ad denotes de Drazin inverse of a. We reall that the Drazin inverse adof a is the unique solution, if it exists, to akxa = ak, xax = x, ax = xa, for some integer k ≥ 0. In this talk,we will give su�ient onditions in order to p + q be Drazin invertible, generalizing reent results, and giveonverse results assuming the ring is Dedekind-�nite.(with R. E. Hartwig)
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Peña, Juan Manuel, University of Zaragoza, Zaragoza, Spain[Plenary, Wed. 8:10�9:05℄From Total Positivity to Positivity: related lasses of matriesMatries with all their minors nonnegative (respetively, positive) are usually alled totally nonnegative(respetively, totally positive). These matries present nie stability properties as well as interesting spetral,fatorization and variation diminishing properties. They play an important role in many appliations to other�elds suh as Approximation Theory, Mehanihs, Eonomy, Optimization, Combinatoris or Computer AidedGeometri Design. We revisit some of the properties and appliations of these matries and show some reentadvanes. Moreover, we show that some results and tehniques oming from Total Positivity theory have beenextended to other lasses of matries whih are also losely related to positivity. Among these other lasesof matries we onsider sign regular matries (whih generalize totally nonnegative matries), some lasses ofP-matries (matries whose prinipal minors are positive), inluding M-matries, and onditionally positivede�nite (and onditionally negative de�nite) matries.Peña, Marta, Universitat Politenia de Catalunya, Barelona, Spain[CT, Tue. 11:00, Room 4℄Perturbations preserving onditioned invariant subspaesInvariant subspaes play a key role both in square matries and linear systems, where they are often alled�onditioned" invariant subspaes. In the ontext of versal deformations, invariant subspaes arise in a naturalway. For instane, in the Carlson problem (that is, the possible Segre harateristi of a blok-triangularnilpotent matrix when diagonal bloks are presribed), one asks for perturbations of the given matrix preservinga pre�xed invariant subspae. The �interesting lass" of the so-alled marked subspaes, namely, the invariantsubspaes having a Jordan basis whih an be extended to a Jordan basis of the whole spae is also onsideredin this work. For instane, it is known that the �simplest" solutions of the Carlson problem are marked, andany other appears in a neighborhood of the marked ones. This notion an be extended to pairs of matries andused for the analogue to the Carlson problem: again the marked Solutions over all the possibilities and arethe simplest realizations. Here we takle the perturbation of a linear system preserving a given onditionedinvariant subspae. We fous our attention on the marked ase whih, as above, has interesting properties; forinstane the �minimal" observable perturbations of a non-observable pair are marked. We obtain the equationsof a miniversal deformation of a pair of matries preserving a given onditioned invariant subspae and solvethem expliitly, obtaining �minimal" solutions (that is, without repeated parameters). Some appliations arederived: omputation of the dimension of the orbits, haraterization of struturally stable objets, study ofbifurations diagrams...(with A. Compta and J. Ferrer)Perdigão, Ceília, Fauldade de Ciênias e Tenologia-UNL, Lisboa, Portugal[CT, Thu. 17:45, Room 3℄ On the equivalene lass graphFor a given simple, onneted and undireted graph G = (V (G), E(G)) we de�ne an equivalene relation Ron V (G) suh that
∀x,y∈V (G) xRy ⇔ N(x) = N(y),where, for all x in V (G), N(x) is the set of all neighbors of x. The equivalene lass graph of G, or R-graph of

G, is the graph G = (V (G), E(G)) where V (G) = {X1, . . . , Xp} is the set of equivalene lasses of R in V (G)and {Xi, Xj} ∈ E(G) if, and only if, there exists x ∈ Xi and y ∈ Xj suh that {x, y} is an edge in G. Inour last work we have omputed the minimum rank of G using the R- graph of G. Although in various ases54



this omputation was simpli�ed, there exist graphs whose R-graph is equal to the graph itself and for whosewe do not have any simpli�ation by this onstrution. Our aim is study the properties of the equivalenelass graph and, more partiulary, haraterize simple onneted and undireted graphs whih are equal to itsequivalene lass graph.(with Rosário Fernandes)Plavka, Jan, Tehnial University, Koie, Slovakia[MS7, Wed. 11:50, Room 3℄On the robustness of matries in max-min algebraLet (B,≤) be a nonempty, bounded, linearly order set and a⊕ b = max(a, b), a⊗ b = min(a, b) for a, b ∈ B.A vetor x is said to be an eigenvetor of a square matrix A if A ⊗ x = λ ⊗ x. A given matrix A is alled(strongly) robust if for every x the vetor Ak ⊗ x is an (greatest) eigenvetor of A for some natural number k.We present a haraterization of robust and strongly robust matries. As a onsequene, an e�ient algorithmfor heking of it is introdued.Referenes[1℄ P. Butkovi£ and R. A. Cuninghame-Green, On matrix powers in max-algebra, Lin. Algebra and its Appl.421 (2007) 370-381.[2℄ K. Cehlárová, Eigenvetors in bottlenek algebra, Lin. Algebra Appl. 175 (1992), 63- 73.[3℄ J. Plavka, On the robustness of matries in max-min algebra (submitted to LAA).Plestenjak, Bor, University of Ljubljana, Ljubljana, Slovenia[MS2, Thu. 18:10, Room 1℄Numerial methods for two-parameter eigenvalue problemsWe onsider the two-parameter eigenvalue problem [1℄
A1x1 = λB1x1 + µC1x1, (18)
A2x2 = λB2x2 + µC2x2,where Ai, Bi, and Ci are given ni × ni matries over C, λ, µ ∈ C, and xi ∈ Cni for i = 1, 2. A pair (λ, µ) is aneigenvalue if it satis�es (18) for nonzero vetors x1, x2. The tensor produt x1 ⊗ x2 is then the orrespondingeigenvetor. On the tensor produt spae S := Cn1 ⊗Cn2 of the dimension N := n1n2 we an de�ne operatordeterminants
∆0 = B1 ⊗ C2 − C1 ⊗B2,
∆1 = A1 ⊗ C2 − C1 ⊗A2,
∆2 = B1 ⊗A2 −A1 ⊗B2.The two-parameter problem (18) is nonsingular if its operator determinant ∆0 is invertible. In this ase

∆−1
0 ∆1 and ∆−1

0 ∆2 ommute and problem (18) is equivalent to the assoiated problem
∆1z = λ∆0z, (19)
∆2z = µ∆0z55



for deomposable tensors z ∈ S, z = x1⊗x2. Some numerial methods and a basi theory of the two-parametereigenvalue problems will be presented. A possible approah is to solve the assoiated ouple of generalizedeigenproblems (19), but this is only feasible for problems of low dimension beause the size of the matries of(19) is N ×N . For larger problems, if we are interested in a part of the eigenvalues lose to a given target, theJaobi�Davidson method [3, 4, 5℄ gives very good results. Several appliations lead to singular two-parametereigenvalue problems where ∆0 is singular. Two suh examples are model updating [2℄ and the quadratitwo-parameter eigenvalue problem
(S00 + λS10 + µS01 + λ2S20 + λµS11 + µ2S02)x = 0 (20)
(T00 + λT10 + µT01 + λ2T20 + λµT11 + µ2T02)y = 0.We an linearize (20) as a singular two-parameter eigenvalue problem, a possible linearization is
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 ỹ = 0,where x̃ =
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. Some theoretial results and numerial methods for singular two-parameter eigenvalue problems will be presented.Referenes[1℄ F. V. Atkinson, Multiparameter eigenvalue problems, Aademi Press, New York, 1972.[2℄ N. Cottin, Dynami model updating � a multiparameter eigenvalue problem, Meh. Syst. Signal Pr.,15 (2001), pp. 649�665.[3℄ M. E. Hohstenbah and B. Plestenjak, A Jaobi�Davidson type method for a right de�nite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392�410.[4℄ M. E. Hohstenbah, T. Ko²ir, and B. Plestenjak, A Jaobi�Davidson type method for thenonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477�497.[5℄ M. E. Hohstenbah and B. Plestenjak, Harmoni Rayleigh�Ritz extration for the multiparametereigenvalue problem, to appear in ETNA.Pone, Daniela, University of Hrade Králové, Hrade Králové, Czeh Republi[MS7, Mon. 12:25, Room 2℄NP-hard problems in extremal algebras takled by partile swarm optimizationThe aim of the ontribution is to present an appliation of a non-standard method alled partile swarmoptimization (PSO), in the area of extremal algebras. Many of the problems studied in max-plus or max-minalgebra annot be solved in polynomial time and have been shown to be NP-hard. From the pratial pointof view, �nding an approximate or suboptimal solution an be a onsiderable ahievement in omparisonwith the situation when no solution is available. New ways of omputation are being developed for attaking56



these diretly intratable problems. Permuted eigenvetor problem (PEV) has been reently investigated inmax-plus algebra: Given a square matrix A and a vetor x of the same dimension, is there a permutation
π suh that the permuted vetor xπ is an eigenvetor of A? It has been proved that PEV and several otherrelated problems are NP-omplete, see [2℄. On the other side, analogous problems are polynomially solvablein max-min algebra, see [4℄, [5℄. In the ontribution, PEV in both versions, max-plus and max-min, has beensolved by the partile swarm optimization method, the results have been analysed and onvergene onditionsdesribed. PEV an be approahed as an optimization problem. When square matrix A and vetor x ofdimension n are given, then vetor variable y is onsidered, with the onstraint that y is a permutation of
x. An objetive funtion z = ‖A ⊗ y − y‖ should be set to minimum. The answer in the given instane ofPEV is `yes' exatly when the minimal value of z is zero. The operation ⊗ in the de�nition of the objetivefuntion z denotes the matrix multipliation in the orresponding extremal algebra (max-plus, or max-min).Partile swarm optimization (PSO) is a global stohasti optimization tehnique developed by Kennedy andEberhart [6℄. PSO is population-based optimization algorithm imitating soial behavior. The optimizationalgorithm starts by a reation of a population (swarm) of randomly onstruted andidate solutions (partiles)resulting in initial loation of partiles in the solution spae. Position of the swarm in the solution spae isthen repeatedly adjusted based on onsideration of previous best positions of eah individual partile in thesolution spae as well as best positions attained by neighbouring partiles (various neighbourhood topologiesan be de�ned). The basi variant of PSO algorithm was proved to be not a loal optimizer. However, suhvariants of PSO algorithm exist whih were proved to be global optimization algorithms [1℄. Examples of su-essful appliations of PSO are related to design problems [3℄, sheduling and planning problems [9℄ or appliedmathematis problems [7℄, [8℄, [10℄. In takling PEV as optimization problem we deal with a disrete variant ofPSO. Eah partile y is a random permutation of x and the swarm is a set of permutations. The solution spaeis omposed of all permutations of x. Objetive funtion of a partile is z as de�ned above, i.e. the norm of thedi�erene A⊗y−y. The omputational ability of PSO to �nd a solution of PEV has been experimentally tested.Referenes[1℄ F. van den Bergh, An Analysis of Partile Swarm Optimizers, PhD thesis, Department of ComputerSiene, University of Pretoria, Pretoria, South Afria (2002).[2℄ P. Butkovi£: Permuted max-algebrai (tropial) eigenvetor problem is NP-omplete, Linear Algebraand its Appliations 428 (2008), 1874-1882.[3℄ C.A. Coello Coello, E.H.N. Luna, A.H.N. Aguirre, Use of Partile Swarm Optimization to DesignCombinational Logi Ciruits, Leture Notes in Computer Siene, Springer-Verlag, 2606 (2003), 398-409.[4℄ M. Gavale, J. Plavka, Simple image set of linear mappings in a max-min algebra, Disrete AppliedMathematis 155 (2007), 611-622.[5℄ M. Gavale, J. Plavka, Permuted max-min eigenvetor problem (to appear in Pro. of the ILASConferene 2008, Canún).[6℄ J. Kennedy, R.C. Eberhart, Partile Swarm Optimization, Pro. of the IEEE International Confereneon Neural Networks, Pisataway, NJ, USA (1995), 1942-1948.[7℄ E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Partile Swarm Optimization for Minimax Problems,Pro. of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1576-1581.[8℄ E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Partile Swarm Optimization for Integer Programming,Pro. of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1582-1587.[9℄ A. Salman, I. Ahmad, S. Al-Madani, Partile Swarm Optimization for Task Assignment Problem,Miroproessors and Mirosystems, 26(8) (2002), 363-371.[10℄ Y. Shi, R.A. Krohlin, Co-evolutionary Partile Swarm Optimization to Solve min-max Problems, Pro.of the IEEE Congress on Evolutionary Computation, 2 (May 2002), 1682-1687.(with Gavale, Martin)
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Poole, George, East Tennessee State University, Johnson City, USA[CT, Mon. 17:20, Room 2℄ Whatever Happened to Rook's Pivoting?In 1991, Poole and Neal (LAA 149:249-272) presented a geometri analysis of both phases of GaussianElimination (GE) in order to better understand how partial pivoting, total pivoting, saling, and onditionnumber in�uene the omputed solution of a system of linear equations in a �nite-preision (F-P)environment.What emerged from this geometri analysis was a new pivoting strategy, Rook's Pivoting, that addressed allof the issues normally assoiated with GE in a F-P environment: pivoting, saling, and ondition number.The work was presented through a series of papers. Here we review the impliation of these papers in bothLA eduation, and LA appliation. The talk should be both illuminating and entertaining.Possani, Edgar, ITAM- Instituto Tenológio Autónomo de Méxio, Méxio, Méxio[MS4, Wed. 11:25, Room 2℄Use of models in the teahing of linear algebraIn this talk we will present an approah to teahing linear algebra using models. In partiular, we areinterested in analyzing the models and modeling (Lesh 2003) approah under an APOS perspetive. We willpresent a short illustration of the analysis on a problem related to tra� �ow that eliits the use of a system oflinear equations and di�erent parameterizations of this system to answer questions on tra� ontrol. Carlsonet. al. (1997) have done some researh regarding the main obstales faed by students when approahingnotions and tools of linear algebra. Their work suggests the use of problems that go beyond simple exerises,espeially those that ome from other subjet areas, whih an enrih and motivate a signi�ant learningexperiene. Under Lesh's models and modeling approah a andidate problem should follow six priniples inorder to qualify for suh analysis as a model-eliiting ativity. We have employed these riteria when seletingand analyzing problems that ould later be used in the teahing of linear algebra. We omplement this analysisby following an APOS approah. The Ation-Proess-Objet-Shema (APOS) theory was built on Piaget'swork and onstrutivist ideas (Dubinsky, 1992, 1994). It intends to model the way students learn advanedmathematial topis by analyzing the mathematial onepts involved in a ertain problem. Through thegeneti deomposition of onepts it is possible to de�ne spei� ations, proesses and objets that studentsoneptualize as they learn. This desription enables researhers to have a learer idea of the learning proessesand to design appropriate questions for students to takle. Our aim is to analyze modeling problems throughthe areful design of ativities that promote signi�ant development of mathematial reasoning in a meaningfulsituation or realisti setting. We will present an analysis of the problem with the help of APOS theory andthe design of ativities that an help students develop their learning. We propose trying out these ativitiestogether with the problem in order to analyze its e�etiveness in desribing the learning proess. The tra��ow problem asks of students several spei� questions on tra� ontrol on a grid of streets in a busy �nanialdistrit of a ity. It has already been used in the lassroom by one of the researhers who is also a linearalgebra teaher. It is our experiene that students enounter great di�ulties in identifying the variablesand the problem onditions that might enable them in setting the linear equations neessary to desribe asystem of simultaneous equations to model the problem. Our hosen problem allows this to beome evident,and to identify where the di�ulties lie. In the proess of exploring di�erent parameterizations, students �ndgraphial representations for the region of possible parameter values (plausible values for the tra� �ow).These di�erent parameterizations help them identify an adequate one with whih to answer spei� questionson tra� ontrol. The realisti setting of the problem motivates this analysis by the students. This will workwill be presented in a full version as a paper at the onferene.(with Preiado, G. and Lozano, D.)
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Prokip, Volodymyr, Institute of Appl. Problem for Meh. and Math. NAS of Ukr, L'viv, Ukraine[CT, Thu. 16:55, Room 5℄On the problem of diagonalizability of matries over a prinipal ideal domainLet R � be a prinipal ideal domain with the unit element e 6= 0 and U(R) the set of divisors of unit element
e. Further, let Rn � the ring of (n× n)-matries over R; Ik � the identity k × k matrix and O the zero n× nmatrix. In this report we present onditions of diagonalizability of a matrix A ∈ Rn, i.e. when for A thereexists a matrix T ∈ GL(n,R) suh that TAT−1 � a diagonal matrix. Theorem. Let A ∈ Rn and

det(Ix− A) = (x− α1)
k1(x − α2)

k2 · · · (x− αr)
kr ,where αi ∈ R, and αi − αj ∈ U(R) for all i 6= j. If m(x) = (x − α1)(x − α2) · · · (x − αr) � the minimalpolynomial of the matrix A, i.e. m(A) = O, then for the matrix A there exists a matrix T ∈ GL(n,R) suhthat

TAT−1 = diag (α1Ik1
, α2Ik2

, . . . , αrIkr
) .Protasov, Vladimir, Mosow State University, Mosow, Russia[CT, Wed. 11:50, Room 4℄

p-radii of linear operators and equations of self-similarity
p-radii of linear operators extend the notion of the joint spetral radius, they are known sine 1995. Weprove that for any p ∈ [1,+∞] a �nite irreduible family of linear operators possesses an extremal normorresponding to its p-radius. As a orollary we derive a riterion for the Lp-ontratibility property of linearoperators and estimate the asymptoti growth of orbits for any point. These results are applied in analysisof funtional di�erene equations with linear ontrations of the argument (self-similarity equations). Spaialases of suh equations are well-known: fratal urves (de Rhum, Koh urves, et.), re�nement equations andso on. We obtain a sharp riterion for the existene and uniqueness of solutions of the self-similarity equationsin various funtional spaes, ompute the exponents of regularity and estimate moduli of ontinuity. This, inpartiular, gives a geometri interpretation of the p-radius in terms of spetral radii of ertain operators inthe spae Lp[0, 1].Pruneda, Rosa E., University of Castilla-La Manha, Ciudad Real, Spain[CT, Tue. 11:00, Room 3℄Complete Orthogonal Deomposition Compared with Diret Projetion MethodsSeveral variants of projetion methods have been applied to solve linear systems of equations and matrixomputations. These methods are diret solvers and onsist of an iterative proess that projets the orthogonalsubspae of eah row of a matrix in the orthogonal subspae of the previous ones. The pivoting proess is basedon the dot produts of the rows of the matrix and a base of the Eulidean spae, whih is transformed at eahiteration onsidering orthogonal relationships. This paper studies the orthogonal deomposition method thatgives a omplete deomposition of the Eulidean spae. The method is ompared with the diret projetionmethod, whih is based on the same pivoting strategy, but gives an impliit fatorization of the matrix. Theexeution and the numerial ost of deteting linear dependenies, solving multiple linear systems and updatingone-rank modi�ation problems are disussed. An appliation to linear regression problems illustrates how todetet ollinear relations and to obtain the oe�ients of suh dependenies with both methods.(with Beatriz Laruz)
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Pryporova, Olga, Iowa State University, Ames, IA, USA[MS1, Wed. 11:50, Room 1℄ Potential Diagonal and D-onvergeneIt is well known that a matrix A is onvergent (i.e. its spetral radius is less than 1) if and only if theStein linear matrix inequality X − A∗XA ≻ 0 has a positive de�nite solution X = P . A stronger type ofonvergene, useful in many appliations, is diagonal onvergene, where a positive diagonal solution P exists.Diagonal onvergene guarantees, in partiular, that a matrix will remain onvergent under multipliativediagonal perturbations D with |D| ≤ I. A matrix A suh that DA is onvergent for all diagonal matries
D, where |D| ≤ I, is alled D-onvergent. In my talk I will present some results on the relations betweendiagonal, D-onvergene, and introdue onnetions to qualitative onvergene.Renaut, Rosemary A., Department of Mathematis and Statistis, Tempe, USA[MS3, Thu. 18:35, Room 2℄A Newton Iteration for estimating the regularizing parameter for least squaresReently, Mead showed that a statistial result on the χ2-distribution of the Tikhonov ost funtional forleast squares problems an be used for estimating an optimal regularizing parameter. Here we explain thebakground and development of a Newton iteration from whih the regularizing parameter an be e�ientlyand e�etively found. We ontrast the Newton iteration with and without solution using the GeneralizedSingular Value Deomposition, hene demonstrating that one an e�iently �nd solutions without the GSVD.At eah Newton step a solution of the regularized problem needs to be found for the urrent value of theregularization parameter. We also investigate the sensitivity of the solution to the auray of alulatingthese intermediate steps of the Newton iteration, hene demonstrating that the overall ideal regularizationparameter an be obtained without signi�ant overhead as ompared to one solution of the given problem.(with Jodi Mead, Boise State University)Roa, Aliia, Dpto. de Matemátia Apliada, Universidad Politénia, Valenia, Spain[CT, Tue. 11:25, Room 4℄ Penils with Presribed Constant SubpenilsWe present a result within the sope of the matrix penil ompletion problem. We haraterize the existeneof an arbitrary penil with a presribed onstant subpenil, in terms of very simpli�ed onditions and foralgebraially losed �elds.(with F. C. Silva)Rodríguez, Juan Alberto, Universitat Rovira i Virgili, Tarragona, España[CT, Fri. 11:50, Room 3℄ The Laplaian Spetrum of HypergraphsIn order to dedue properties of graphs from results and methods of algebra, �rstly we need to translateproperties of graphs into algebrai properties. In this sense, a natural way is to onsider algebrai struturesor algebrai objets as, for instane, groups or matries. In partiular, the use of matries allows us touse methods of linear algebra to derive properties of graphs. There are various matries that are naturallyassoiated with graphs, suh as the adjaeny matrix, the Laplaian matrix, and the inidene matrix. One ofthe main aims of algebrai graph theory is to determine how, or whether, properties of graphs are re�eted inthe algebrai properties of suh matries. In this paper we ollet some resent results on the Laplaian spetrum60



of hypergraphs. We fouss our attention on metri parameters, inluding eentriity, exess, diameter andWiener index. Throughout this paper we partiularize the results to the ase of walk-regular hypergraphs.(with Aida Kamisali)Rosenthal, Peter, University of Toronto, Canada[Plenary, Fri. 8:10�9:05℄ Invariant subspaes of semigroups of matriesBy a �semigroup of matries" we simply mean a olletion of square omplex matries that is losed undermultipliation. This will be a ompletely self-ontained survey of some results related to invariant subspaesof suh semigroups. It will begin with a maximally-simple proof of Burnside's Theorem (obtained in jointwork with Halperin and Lomonosov) that has the immediate orollary that a semigroup is irreduible (i.e., hasonly the trivial invariant subspaes) if and only if its linear span is the spae of all matries. A proof will bepresented of a joint result with Heydar Radjavi that an irreduible semigroup is �nite, ountable or bounded ifthe range of a non-zero linear funtional restrited to the semigroup has the orresponding property. Anotherjoint result with Radjavi gives a su�ient ondition that an irreduible semigroup be similar to a semigrouponsisting of multiples of unitary matries. In a sense, the opposite of �irreduible" is �triangularizable." Tothe extent that time permits, there will be disussion of su�ient onditions (due to many mathematiians)that a semigroup be similar to a semigroup of upper triangular matries.Rump, Siegfried M., Hamburg University of Tehnology, Hamburg, Germany[CT, Mon. 17:45, Room 3℄The ratio between the Toeplitz and the unstrutured ondition numberReently we showed that the ratio between the normwise Toeplitz strutured ondition number of a linearsystem and the general unstrutured ondition number has a �nite lower bound. However, the bound was notexpliit, and nothing was known about the quality of the bound. In a joint work with H. Sekigawa we givean expliit lower bound only depending on the dimension, and we show that this bound is almost sharp. Thesolution of both problems is based on the minimization of the smallest singular value of a lass of Toeplitzmatries and its nie onnetion to a lower bound on the oe�ients of the produt of two polynomials.(with H. Sekigawa)Russo, Maria Rosaria, Department of Mathematis - University of Padua, Padova, Italy[CT, Tue. 16:55, Room 4℄On some general determinantal identities of Sylvester typeSylvester's determinantal identity is a well-known identity in matrix analysis whih expresses a determinantomposed of bordering determinants in terms of the original one. It has been extensively studied, both inthe algebrai and in the ombinatorial ontext and is frequently used in ontext as approximation, linearprogramming and extrapolation algorithms. Several authors have deepened the main property of this lassialSylvester's identity, some of these have obtained signi�ant results as generalized formulas. In this talk wepresent a new generalization of the Sylvester's determinantal identity, whih expresses the determinant of amatrix in relation with the determinant of the bordered matries obtained adding more than one row and oneolumn to the original matrix.(with Mihela Redivo-Zaglia)
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Rust, Bert W., National Institute of Standards and Tehnology, Gaithersburg, MD, USA[MS3, Thu. 16:55, Room 2℄A Trunated Singular Component Method for Ill-Posed ProblemsThe trunated singular value deomposition (TSVD) method for solving ill-posed problems regularizes thesolution by negleting ontributions in the diretions de�ned by singular vetors orresponding to small sin-gular values. In this work we propose an alternate method, negleting ontributions in diretions where themeasurement value is below the noise level. We all this the trunated singular omponent method (TSCM).We present results of this method on test problems, omparing it with the TSVD method and with Tikhonovregularization.(with Dianne P. O'Leary, University of Maryland)Salam, Ahmed, Université du Littoral-C�te d'Opale, Calais, Frane[CT, Tue. 18:10, Room 4℄A struture-preserving Arnoldi-like method for a lass of strutured matriesThe aim of this talk is to introdue an Arnoldi-like method that preserves the strutures of a large setof strutured matries. Interesting partiular elements of suh set are Hamiltonian, skew-Hamiltonian andsympleti matries. The obtained struture-preserving size redution is ruial for the omputation of severaleigenvalues of suh large and sparse strutured matries.Sánhez Perales, Salvador, Benemérita Universidad Autónoma de Puebla, Puebla, Méxio[CT, Thu. 11:00, Room 3℄ Manifold of proper elementsLet X be a Banah spae and let B(X) denote the spae of all bounded linear transformation on X . With
Eig(X) = {(λ, L,A) ∈ C× P1(X)× B(X) : A(L) ⊂ L and A|L = λI}we denote the manifold of proper elements of X and let (λ0, L0, A0) ∈ Eig(X) be a �x arbitrary element. Inthe �rst part of this note we give neessary and su�ient onditions that (λ, L,A) ∈ Eig(X) using the systemof equations determinate with (λ0, L0, A0) ∈ Eig(X). In the seond part we apply this result to desriberelation between multipliity of eigenvalue λ0 of the operator A0 and the spetrum of the operator Â0 fromquotient X/L0 to itself de�nite with Â0(x+ L0) = A0(x) + L0.(with S. Djordjevi)Sat�, Kenzi, Tamagawa University, Tokyo, Japan[CT, Thu. 12:15, Room 4℄The algebrai relations of urvatures of PL manifoldsThere are two types of the Gauss-Bonnet theorems for PL manifolds, Banho�'s theorem (the sum of Ban-ho�'s urvature of all verties is equal to the Euler number) and Homma's theorem (the alternative sum ofHomma's urvature of all faes is equal to the Euler number). In this talk, the algebrai relations of theseurvatures are onsidered.
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Shae�er, Elisa, Universidad Autónoma de Nuevo León, San Niolás de los Garza, Méxio[CT, Fri. 11:25, Room 3℄Loally omputable approximations of absorption times for graph lusteringGraph lustering aims to partition a given graph into groups of tightly interrelated verties. In loal lustering,the aim is to identify the group in whih a given seed vertex belongs. We study the problem of loal lusteringbased on the mathematis of random walks in graphs. In this work, we �rst algebraially express the absorptiontimes of a random walk to the seed vertex in terms of the spetrum of a matrix representation of the graph'sadjaeny relation. We argue and experimentally demonstrate that a single eigenvetor often su�es toobtain a good approximate for the absorption times from all other verties to the seed. We then use a loallyomputable gradient-desent method to approximate this eigenvetor based on its formulation in terms of anoptimization problem of the Rayleigh quotient. In order to arry out the loal lustering, we interpret theomponents of the resulting approximation vetor as vertex similarities and ompute the luster of the seedvertex as a standard two-lassi�ation task on the omponents of the vetor. At no phase of the proposedmethod for loal lustering is it neessary to resort to global information of the graph. This method tiestogether a well-established �eld of spetral lustering and the absorption times of a random walk, henepermitting extensions to lustering direted graphs in terms of loal approximations to absorption times,whereas muh of the matrix algebra used in spetral lustering of undireted graphs is not diretly appliableto the asymmetri matries that rise from direted graphs.(with Pekka Orponen and Vanesa Avalos)Sha�rin, Burkhard, Ohio State University, Columbus, OH, USA[CT, Wed. 11:00, Room 4℄Total least-squares regularization of Tykhonov type and an anient raetrak in CorinthIn this ontribution a variation of Golub/Hansen/O'Leary's Total Least-Squares (TLS) regularization teh-nique is introdued, based on the Hybrid APproximation Solution (HAPS) within an Errors-in-Variables (EIV)model. After developing the (nonlinear) estimator through a traditional Lagrange approah, the new methodis applied to a problem from arheology. There, both the radius and the enter of a irle have to be found,of whih only a small part of the ar had been surveyed in-situ, thereby giving rise to an ill-onditioned set ofequations. Aording to the arheologists involved, this irular ar served as the starting line of a raetrakin the anient Greek stadium of Corinth, a.500 BC. The present study ompares previous estimates of theirle parameters with the newly developed �Regularized TLS Solution of Tykhonov type".(with Kyle Snow)Shneider, Hans, University of Wisonsin, Madison, Madison, WI, USA[MS7, Wed. 12:15, Room 3℄Nonnegative linear algebra and max linear algebra: where's the di�erene?There are substantial similarities in orresponding results in the two forms of linear algebra mentioned in thetitle, and there are di�erenes. We brie�y explore the reason for the di�erenes and some onsequenes.
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Sebeldin, Anatoly, University UGANC, Guinea, Conakry, Guinea[CT, Thu. 11:50, Room 5℄Algorithm resolving problem of determination of �nite yligroup by its automorphism groupWe say, that group G is determined by its automorphism group in some lass X if Aut(G) ∼= Aut(H) imply
H ∼= G for any H ∈ X. For any �nite yli group the matrix of its automorphism group and the algorithmof omparison of these matries are obtained. Thus, the problem of determination of �nite yligroup Z(n)is redued to searh a number m 6= n suh, that A(n) = A(m) where A(n) and A(m) are the matries of
Aut(Z(n)) and Aut(Z(m)).Literature:[1℄ Dètermination d'un groupe ylique par son groupe des automorphismes A. Sebeldin, A.Sylla, Revue des sienes. UGANC, 4 (2002), 26-30.(with V. K. Vildanov and A. L. Sylla)Seddighin, Morteza, Indiana University East, Rihmod, Indiana[CT, Wed. 12:15, Room 4℄ Matrix Optimization in StatistisStatistiians have been dealing with matrix optimization problems whih similar to Matrix Antieigenvalueproblems. These problems our in areas suh as statistial e�ieny and anonial orrelations. Statisti-ians have generally took a variational approah to treat these matrix optimization problems. However, wewill use the tehniques we have developed for omputation of Antieigenvalues to provide simpler solutions.Additionally, these tehniques have enabled us to generalize some of the matrix optimization problems instatistis from positive matries to normal aretive matries and operators. One the tehniques we use isa Two Nonzero Component Lema whih is �rst proved by the author. Another tehnique is onverting theAntieigenvalue problem to a onvex programming problem. In the latter method the problem is redued to�nding the minimum of a onvex funtion on the numerial range of an operator (whih is a onvex set).Semrl, Peter, University of Ljubljana, Ljubljana, Slovenia[CT, Tue. 11:25, Room 3℄ Loally linearly dependent operatorsLet U and V be vetor spaes. Linear operators T1, . . . , Tn : U → V are loally linearly dependent if forevery u ∈ U the vetors T1u, . . . , Tnu are linearly dependent. Some reent results on suh operators will bepresented.Sendov, Hristo, The University of Western Ontario, London, Canada[CT, Thu. 11:50, Room 3℄ Spetral ManifoldsIt is well known that the set of all n× n symmetri matries of rank k is a smooth manifold. This set an bedesribed as those symmetri matries whose ordered vetor of eigenvalues has exatly n − k zeros. The setof all vetors in Rn with exatly n− k zero entries is itself an analyti manifold. In this work, we haraterizethe manifoldsM in Rn with the property that the set of all n×n symmetri matries whose ordered vetor ofeigenvalues belongs to M is a manifold. In partiular, we show that if M is a C2, C∞, or Cω manifold thenso is the orresponding matrix set. We give a formula for the dimension of the matrix manifold in terms ofthe dimension of M .(with A. Daniilidis, J. Malik, and A. Lewis) 64



Sergeev, Sergey, University of Birmingham, Birmingham, United Kingdom[MS7, Tue. 17:20, Room 3℄On Kleene stars and intersetion of �nitely generated semimodulesIt is known that Kleene stars are fundamental objets in max-algebra and in other algebrai strutures withidempotent addition. They play important role in solving lassial problems in the spetral theory, and alsoin other respets. On the other hand, the approah of tropial onvexity puts forward the tropial ellulardeomposition, meaning that any tropial polytope (i.e., �nitely generated semimodule) an be ut into a �nitenumber of onvex piees, and subsequently treated as a ellular omplex. We show that any onvex piee ofthis omplex is max-algebrai olumn span of a uniquely de�ned Kleene star. We provide some evidene thatthe tropial ellular deomposition an be used as a purely max-algebrai tool, with the main fous on theproblem of �nding a point in the intersetion of several �nitely generated semimodules.Shader, Bryan, University of Wyoming, Laramie, US[MS1, Thu. 11:50, Room 1℄ Average minimum rank of a graphWe establish asymptoti upper and lower bounds on the average minimum rank of a graph using probabilisti,linear algebrai and graph theoreti tehniques.(with Franeso Barioli, Shaun Fallat, Tray Hall, Daniel Hershkowitz, Leslie Hogben, Ryan Martin, and Heinvan der Holst)Shahryari, Mohammad, Tabriz University, Tabriz, Iran, Tabriz, Iran[CT, Thu. 12:15, Room 5℄
Z2-graded symmetry lasses of tensorsIn this paper, we de�ne a natural Z2-gradation on the symmetry lass of tensors Vχ(G). We give thedimensions of even and odd parts of this gradation. Also we prove that the even part (the odd part) of thisgradation is zero, if and only if the whole symmetry lass is zero.Shaked-Monderer, Naomi, Emek Yezreel College, Emek Yezreel, Israel[Plenary, Tue. 8:10�9:05℄ Completely Positive Matries and the CP-rankA matrix A is ompletely positive if A = BBT for some nonnegative matrix B. The minimum number ofolumns in suh B is the p-rank of A.We review the main results on omplete positivity and in partiular re-examine results on the possiblep-ranks of ompletely positive matries.Singer, Ivan, Romanian Aademy of Sienes, Buharest, Romania[MS7, Wed. 10:35, Room 3℄ Max-min onvexityThe max-min semiring is the set R = R ∪ {−∞,+∞} endowed with the operations ⊕ = max,⊗ = min. Westudy the semimodule Rn

= R × ... × R (n times), with the operations ⊕ and ⊗ de�ned omponentwise. Asubset G of Rn (respetively, a funtion f : R
n → R) is said to be max-min onvex if the relations x, y ∈ G(respetively, x, y ∈ Rn) and α, β ∈ R, α ⊕ β = +∞, where +∞ is the neutral element for ⊗ = min, imply65



(α ⊗ x) ⊕ (β ⊗ y) ∈ G (respetively, f((α ⊗ x) ⊕ (β ⊗ y)) ≤ (α ⊗ f(x)) ⊕ (β ⊗ f(y)). We give some resultson max-min onvexity of sets and funtions in R
n (e.g. on segments, semispaes, separation, multi-orderonvexity, ...) that orrespond to some results for max-plus onvexity, replaing ⊗ = + of the max-plus aseby the semi-group operation ⊗ = min of the max-min ase.ReferenesK. Zimmermann, Convexity in semimodules. Ekonom.-Mat. Obzor 17 (1981), 199-213.V. Nitia and I. Singer, Contributions to max-min onvex geometry. I: Segments. Lin. Alg. Appl. 428 (2008),1439-1459. II: Semispaes and onvex sets. Ibidem 2085-2115.Sinkovi, John, Tehnishe Universiteit Eindhoven, Eindhoven, Netherlands[CT, Thu. 18:35, Room 3℄An upper bound for the maximum nullity of a symmetri matrix whose graph is outerplanarLet G = (V,E) be a graph with V = {1, 2, . . . , n}. De�ne S(G,R) as the set of all n×n real-valued symmetrimatries A = [ai,j ] with ai,j 6= 0, i 6= j if and only if ij ∈ E. ByM(G) we denote the largest possible nullity ofany matrix A ∈ S(G). The path over number of a graph G, denoted P (G), is the minimum number of vertexdisjoint paths ourring as indued subgraphs of G whih over all the verties of G. The path over numberof a graph G has been linked to the maximum nullity of G. It has been shown by Duarte and Johnson that fora tree T , P (T ) = M(T ). Barioli, Fallat, and Hogben have shown that for a uniyli graph G, P (G) = M(G)or P (G) = M(G) + 1. In this talk I will show that for outerplanar graphs the path over number is anupperbound for the maximum nullity and show that equality holds for partial 2-paths, whih are outerplanar.Sivi, Klemen, Institute of Mathematis, Physis and Mehanis, Ljubljana, Slovenia[CT, Thu. 10:35, Room 4℄ On varieties of ommuting triplesThe set C(3, n) of all triples of ommuting n×nmatries over an algebraially losed �eld F is a variety in F 3n2de�ned by 3n2 equations, whih are relations of ommutativity. The problem �rst proposed by Gerstenhaberasks to determine for whih natural numbers n this varitey is irreduible. This is equivalent to the problemwhether C(3, n) equals to the Zariski losure of the subset of all triples of generi matries (i.e. matrieshaving n distint eigenvalues). The answer is known to be positive for n ≤ 7 and negative for n ≥ 30. Usingsimultaneous ommutative perturbations of pairs of matries in the entralizer of the third matrix we provethat C(3, 8) is also irreduible.�migo, Helena, University College Dublin, Dublin, Ireland[MS8, Mon. 17:20, Room 1℄An example of onstruting a nonnegative matrix with given spetrumWe say that a list of n omplex numbers σ is the nonzero spetrum of a nonnegative matrix, if thereexists a nonnegative integer N suh that σ together with N zeros added to it is the spetrum of some

(n + N) × (n + N) nonnegative matrix. Boyle and Handelman haraterized all lists of n omplex numbersthat an be the nonzero spetrum of a nonnegative matrix. In this talk we will present a onstrutive proofthat τ(t) = (3 + t, 3− t,−2,−2,−2) is the nonzero spetrum of some nonnegative matrix for every t > 0. Wewill give a bound for the number of zeros that needs to be added to τ(t) to ahieve a nonnegative realization.We will disuss how the method presented ould be applied to more general situations.(with La�ey, Thomas) 66



Soares, Graça, University of Tras-os-Montes and Alto Douro, Vila Real, Portugal[CT, Mon. 17:45, Room 4℄Inequalities on an inde�nite inner produt spaeWe study some matrix inequalities on an inde�nite inner produt spae, indued by a selfadjoint involution J,for J-selfadjoint matries with non-negative eigenvalues. In partiular, some haraterizations of the J-haotiorder are obtained.(with N. Bebiano et al.)Spitkovsky, Ilya, College of William and Mary, Blaksburg, VA, USA[Plenary, Fri. 9:10�10:05℄On the urrent state of the fatorization problem for almost periodi matrix funtionsFatorization of almost periodi matrix funtions arises naturally in a variety of problems, both theoretialand applied, and for many of them the matrix in question is 2-by-2 and triangular. Even in this setting thefatorability properties remain a mystery, in striking di�erene with both the salar almost periodi ase andwith purely periodi matrix ase. We will give a survey of available approahes to onstrutive fatorizationof matries in question, and their relation to ertain systems of linear equations.Stefan, Wolfgang, Arizona State University, Tempe, Arizona[MS3, Fri. 11:25, Room 2℄Regularizing Least Squares with the Conentration MethodWe present a novel deonvolution approah that simultaneously deblurs and detets edges in pieewise smoothsignals. The edges and smooth regions, separated by jump disontinuities, are both preserved. The methoduses a two step proedure: The polynomial annihilation edge detetion method ombined with total variation(TV) deonvolution obtains an estimate of the loation of jump disontinuities in blurred noisy data. Thisinformation is used to determine the order for a higher-order TV regularization whih is then utilized in thesignal restoration. As ompared to those obtained with standard �rst order TV, signal restorations are moreaurate representations of the true signals, as measured in a relative l2 norm, and an also be used to obtaina more aurate estimation of the loations and sizes of the true jump disontinuities.(with Rosemary Renaut and Anne Gelb)Stosi, Marko, Instituto de Sistemas e Robotia, IST, Lisbon, Portugal[CT, Mon. 12:25, Room 3℄ On Generalized Prorustes ProblemIn this talk we present a new approah to the generalized Prorustes problem: For given real matries
A ∈ Rn×3 and B ∈ Rn×2, �nd the Stiefel matrix Q ∈ R3×2 (i.e. suh that QTQ = I2), that minimizes theFrobenius norm of B − AQ. We rewrite this problem as the more general Quadrati Programming program,and give fast algorithm for its (partial) solutions. The solution is based on the omputation of onvex hulls ofvarious sets of matries.(with João Xavier)
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Strong, David, Pepperdine University, Malibu, California, USA[MS4, Wed. 11:50, Room 2℄A Java Applet and Introdutory Tutorial for the Jaobi, Gauss-Seidel and SOR MethodsI will disuss a Java applet, tutorial and exerises that are designed to allow both students and instrutorsto experiment with and visualize the Jaobi, Gauss-Seidel and SOR Methods in solving systems of linearequations. The applet is for working with 2 x 2 systems. The tutorial inludes an analysis (using eigenvaluesand spetral radius) of these methods. The exerises are designed to be done using the applet in order to moreeasily investigate ideas and issues that are often not dealt with when these methods are �rst introdued, butthat are fundamental to numerial analysis and linear algebra, suh as eigenvalues/vetors and onvergenerates.Stuart, Je�rey, Pai� Lutheran University, Taoma, USA[CT, Mon. 11:35, Room 4℄ Spetrally Arbitrary Ray PatternsAn n×n ray pattern A is said to be spetrally arbitrary if for every moni n-th degree polynomial p(x) withomplex oe�ients, there is a omplex matrix in the pattern lass of A possessing p(x) as its harateristipolynomial. It is shown that every n × n irreduible, spetrally arbitrary ray pattern has at least 3n − 1nonzero entries. A lass of n×n irreduible, spetrally arbitrary ray patterns with exatly 3n nonzero entriesfor eah integer n with n > 3 is exhibited. The main tool employed is the nilpotent Jaobi method, whihpreviously has been used in the study of irreduible, spetrally arbitrary sign patterns.Szyld, Daniel, Temple University, Phialdelphia, USA[MS8, Tue. 10:35, Room 2℄On General Matries Having the Perron-Frobenius PropertyWe say that a matrix has the Perron-Frobenius property if its spetral radius is an eigenvalue for whihthere is an entry-wise nonnegative eigenvetor. Matries having the Perron-Frobenius property may be viewedas generalizations of nonnegative matries. We onsider spaes onsisting of suh generalized nonnegativematries and study some of their topologial aspets suh as onnetedness and losure. In addition, weompletely desribe the similarity transformations leaving suh spaes invariant. We prove some new resultsneeded for the analysis mentioned above, in whih we show the existene of orthogonal matries lose to theidentity whih map semipositive vetors to positive ones. This new tool may be useful in other ontexts aswell.(with Elhashash, Abed)Szyld, Daniel, Temple University, Phialdelphia, USA[MS8, Tue. 11:25, Room 2℄Convergene of Stationary Iterative Methods for Hermitian Semide�nite Linear SystemsA simple proof is presented of a quite general theorem on the onvergene of stationary iterations for solvingsingular linear systems whose oe�ient matrix is Hermitian and positive semide�nite. In this manner, elegantproofs are obtained of some known onvergene results, inluding the neessity of the P -regular splittingresult due to Keller, as well as reent results involving generalized inverses. Other generalizations are alsopresented. These results are then used to analyze the onvergene of several versions of algebrai additive andmultipliative Shwarz methods for Hermitian positive semide�nite systems.(with Frommer, Andreas and Nabben, Reinhard) 68



Tam, Bit-Shun, University of Birmingham, Birmingham, UK[MS1, Fri. 16:45, Room 1℄Maximizing spetral radius of unoriented Laplaian matrixFor a (simple) graph G, by the unoriented Laplaian matrix of G we mean the matrix K(G) = D(G)+A(G),where A(G), D(G) denote respetively the adjaeny matrix and the diagonal matrix of vertex degrees of G.In this talk, I'll report on reent progress in the problem of maximzing the spetral radius of the unorientedLaplaian matrix over various lasses of graphs. Our treatment depends on the theory of threshold graphs,together with following new result: Let G be a graph. Let V1 . . . , Vr be the equivalene lasses for theequivalene relation ∼ on V (G) de�ned by: u ∼ v if and only if N(u) \ {v} = N(v) \ {u}, where N(u) denotesthe neighbor set of u in G. For j = 1, . . . , r, let nj denote the ardinality of Vj and let δj be the ommondegree of the verties in Vj . Let I1 (respetively, I2) onsist of all indies j suh that nj > 1 and G[Vj ] is anull graph (respetively, a omplete graph). For i, j = 1, . . . , r, let γij equal 1 if there is an ar between Vi and
Vj and equal 0, otherwise. Also, let B = (bij) denote the r× r matrix given by: bij equals γijnj for i 6= j andequals γii(ni−1) for i = j. Then the spetrum of K(G) is given by: σ(K(G)) = σ(∆+B)∪{δi(ni−1 times :
i ∈ I1} ∪ {δi − 1(ni − 1) times : i ∈ I2}, where ∆ = diag(δ1, . . . , δr).(with Ding-Jung Chang and Shui-Hei Wu)Tanguay, Denis, Université du Québe à Montréal (UQAM), Montréal, Canada[MS4, Tue. 17:45, Room 1℄ A fundamental paradox in learning algebraThe generalizing, formalizing and unifying nature of some of the onepts of Linear Algebra leads to ahigh level of abstration, whih in turn onstitutes a soure of di�ulties for students. When asked to dealwith new expressions, new symbolism and rules of alulation, students fae what researhers in mathematiseduation � suh as Dorier, Rogalski, Sierpinska or Harel � have identi�ed as `the obstale of formalism'.Teahers bring in new mathematial objets, sometimes in a non expliit way, by using at one the symbolsreferring to these objets or to the related relations, without explaining or justifying the meaning or therelevane of their hoies, regarding this new symbolism. Calulations and manipulations with these newobjets build up to new algebras (vetor or matrix algebras) more omplex than basi (high shool) algebra,but nevertheless syntatially modelled on it. The gap thus aused reveals itself when students bring outinonsistent or meaningless writings : �The obstale of formalism manifests itself in students who operateat the level of the form of expressions without seeing these expressions as referring to something other thanthemselves. One of the symptoms is the onfusion between ategories of mathematial objets; for example,sets are treated as elements of sets, transformations as vetors, relations as equations, vetors as numbers, andso on� (Sierpinska et al., 1999, p. 12). For too many students attending their �rst ourse in Linear Algebra,the latter is nothing but a atalogue of very abstrat notions, for whih they have almost no understanding,being overwhelmed by a �ood of new words, new symbols, new de�nitions and new theorems (Dorier, 1997).Our talk will be based on a study onduted within the ontext of a master degree in mathematis eduation(maîtrise en didatique des mathématiques, Université du Québe à Montréal ; f. Corriveau & Tanguay,2007). Through this study, we tried to have a better understanding of transitional di�ulties, due to theabrupt inrease in what is expeted from students with respet to formalism and proof, when going fromSeondary shools to `Cegeps' (equivalent in Québe of `upper seondary' or `high-shool', 17-19 years of age).The Linear Algebra ourses having been identi�ed as those in whih suh transitional problems are the mostaute, we �rst seleted, among all problems submitted in a given L. A. ourse � the teaher of whih wasready to partiipate in the study � those involving a proof or a reasoning at least partly dedutive.Through the systemati analysis of these problems, we evaluated and ompared their level of di�ulty, aswell as students' preparation for oping with suh di�ulties, from an `introdution-to-formalism' perspetive.The framework used to analyse the problems stemmed from a remodelling of Robert's framework (1998). The69



remodelling was a onsequene of having ompared/onfronted an a priori analysis of three problems (usingRobert's framework), with the analysis of their erroneous solutions as they appeared in twelve students'homework opies.Among the onlusions brought up by the study, we shall be interested in the following ones
• Mathematial formalism allows a `ompression' of the mathematial disourse, simpli�ation and sys-tematization of the syntax, by whih one operates on this disourse with better e�ieny. But thisimprovement in e�ieny is ahieved to the detriment of meaning. As in Bloh and al. (2007), the studyon�rms that �...formal written disourse does not arry per se the meaning of neither the laws that itstates nor the objets that it sets forth.� For many students, symboli manipulations are di�ult inLinear Algebra beause meaning has been lost somewhere. By trying to have a better understanding ofthe underlying obstale, we ame to identify what we all `the fundamental paradox in learning [a new℄algebra', some elements of whih will be disussed further in the talk.
• The analysis of students' written produtions brings us to observe that in the proess of proving, dif-�ulties aused by the introdution of new objets and new rules of alulation on the one hand, anddi�ulties related to ontrolling the dedutive reasoning and its logial struture on the other, arereinforing one another.
• A better understanding of students' errors, by an error-analysis suh as the one done in the study, allowsa better evaluation of the di�ulty level of what is asked to students, and thus a better understanding ofthe problems linked to aademi transitions (from lower-seondary to upper-seondary to university) inmathematis. Suh analyses ould give Linear Algebra teahers better tools, for estimating the di�ultiesin the tasks they submit to their students, as well as for understanding the underlying ognitive gaps andruptures. It would be advisable that teahers be introdued to suh error-analysis work, in the settingof their pre-servie or in-servie instrution.Bloh, I., Kientega, G. & Tanguay, D. (2007). Synthèse du Thème 6 : Transition seondaire / post-seondaire et enseignement des mathématiques dans le postseondaire. To appear in Ates du Colloque EMF2006. Université de Sherbrooke.Corriveau, C. & Tanguay, D. (2007). Formalisme aru du seondaire au ollégial : les ours d'Algèbrelinéaire omme indiateurs. To appear in Bulletin AMQ, Vol. XLVII, n◦4.Dorier, J.-L., Harel, G., Hillel, J., Rogalski, M., Robinet, J., Robert, A. & Sierpinska, A. (1997). L'ensei-gnement de l'algèbre linéaire en question. J.-L. Dorier, ed. La Pensée Sauvage. Grenoble, Frane.Harel, G. (1990). Using Geometri Models and Vetor Arithmeti to Teah High-Shool Students BasiNotions in Linear Algebra. International Journal of Mathematial Eduation in Siene and Tehnology, Vol21, n◦3, pp. 387-392.Harel, G. (1989). Learning and Teahing Linear Algebra : Di�ulties and an Alternative Approah toVisualizing Conepts and Proesses. Fous on Learning Problems in Mathematis, Vol. 11, n◦2, pp. 139-148.Robert, A. (1998). Outils d'analyse des ontenus mathématiques à enseigner au lyée et à l'université.Reherhes en didatique des mathématiques, vol. 18, n◦2, pp. 139-190.Rogalski, M. (1990). Pourquoi un tel éhe de l'enseignement de l'algèbre linéaire ? In Enseigner autrementles mathématiques en DEUG Première Année, Commission inter-IREM université (ed.), pp. 279-291. IREMde Lyon.Sierpinska, A., Dreyfus, T. & Hillel, J. (1999). Evaluation of a Teahing Design in Linear Algebra : theCase of Linear Transformations. Reherhes en didatiques des mathématiques, Vol. 19, n◦1, pp. 7-40.(with Corriveau, Claudia)
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Teixeira Matos, Isabel, Centro de Estruturas Lineares e Combinatórias (CELC), Lisboa, Portugal[CT, Fri. 15:55, Room 3℄A Completion Problem over the Field of Real NumbersLet F be a �eld. In 1975 G. N. de Oliveira has proposed the following ompletion problems: Desribe thepossible harateristi polynomials of [
A1,1 A1,2

A2,1 A2,2

]
,where A1,1 and A2,2 are square submatries, when some of the bloks Ai,j are �xed and the others vary.Several of these problems remain unsolved. We give the solution, over the �eld of real numbers, of Oliveira'sproblem where the bloks A1,2, A2,1 are �xed and the others vary.(with Fernando C. Silva)Trigueros, María, Depto de Matemátias ITAM, Méxio DF, Méxio[MS4, Mon. 12:25, Room 1℄Spanning sets and vetor spaes they generate: an APOS analysisThis work forms part of a larger researh projet that aims to identify student di�ulties with Linear Algebraonepts. The theoretial framework that we have hosen for this partiular study is APOS (Ation � Proess� Objet � Shema) theory, whose e�ieny in identifying students' mental onstrutions is well doumentedin other areas of mathematis suh as Calulus, Abstrat Algebra and Disrete Mathematis. In our previouswork (Kú et al., submitted) in looking into the mental onstrutions in relation with the onept of basis,we ame aross various di�ulties that students experiened with spanning sets and the vetor spaes theygenerate. Our results revealed that most of the interviewed students had an ation or proess oneptionof this onept. When omparing the empirial data with the geneti deomposition originally proposed forthis onept, where the onepts of linear independene and generator set had been onsidered, it appearedthat most of the obstales had to do with what seemed to be neessary onditions to onstrut the notion ofspanning set as a proess. In this talk we present a study that intends to study the onstrution of the notionof spanning set and its relation with the vetor spae onept. A preliminary geneti deomposition for thisonept was developed and instruments were designed aording to this geneti theoretial analysis. We willpresent the analysis of the interviews that were onduted with students taking a Linear Algebra ourse. Wewill disuss and interpret results in terms of APOS theory.(with Ku, Darly and Oktaç, Asuman)Uhiyama, Mitsuru, Shimane University, Matsue, Shimane, Japan[CT, Mon. 18:10, Room 4℄ A New Majorization between funtionsLet {ai}ni=1 and {bi}ni=1 be �nite sets of real numbers, and rearrange them in dereasing order. Then

{ai}ni=1 is said to be submajorized by {bi}ni=1 if ∑k
i=1 ai ≦

∑k
i=1 bi for 1 ≦ k ≦ n. This lassial onept-(sub)majorization- is very useful in the study of polynomials and matries.De�nition. For a real inreasing funtion k on interval J and a nondereasing funtion h on I, we all k amajorization of h and denote h � k if

k(A) ≦ k(B) =⇒ h(A) ≦ h(B).A funtion f(t) de�ned on an interval I is alled an operator monotone funtion on I, provided A ≦ B implies
f(A) ≦ f(B) for every pair A and B. P(I) denotes the set of all operator monotone funtions on I, P+(I)does {f ∈ P(I) : f ≧ 0}.
LP+(I) := {h : h(t) > 0 and log h ∈ P(I◦)}. 71



P
−1
+ [a, b) := {h|h is inreasing on [a, b) and h−1 ∈ P[0,∞)}.

P
−1
+ (a, b) is likewise de�ned.Theorem 1. For non-inreasing sequenes {ai}ni=1 and {bi}mi=1,
u(t) :=

∏n
i=1(t− ai) (t ≧ a1), v(t) :=

∏m
i=1(t− bi) (t ≧ b1).Then u(t) ∈ P

−1
+ [a1,∞), and

m ≦ n,

k∑

i=1

bi ≦
k∑

i=1

ai (1 ≦ k ≦ m) =⇒ v � u ([a1,∞)).Produt Lemma. Let I be a right open interval with end points a, b and h(t), g(t) non-negative funtionsde�ned on I suh that the produt hg is an inreasing funtion with hg(a+ 0) = 0, hg(b− 0) =∞. Then for
ψ1, ψ2 in P+[0,∞)

g � hg =⇒ h � hg, ψ1(h)ψ2(g) � hg.Produt Theorem. For every right open interval I,
P
−1
+ (I) · P−1

+ (I) ⊂ P
−1
+ (I), LP+(I) · P−1

+ (I) ⊂ P
−1
+ (I).Further, let gi(t) ∈ LP+(I) for 1 ≦ i ≦ m and hj(t) ∈ P

−1
+ (I) for 1 ≦ j ≦ n. Then for ψi, φj ∈ P+[0,∞)

m∏

i=1

ψi(gi)

n∏

j=1

φj(hj) �
m∏

i=1

gi

n∏

j=1

hj.Proposition. For 0 < β ≦ α,
tα � tαe−t−β

.Moreover, if 1 ≦ α, then
tαe−t−β ∈ P

−1
+ [0,∞).Theorem 2. Let I be a right open interval, h(t) ∈ P

−1
+ (I), g(t) ∈ LP+(I), and let h̃(t) ≧ 0 be non-dereasingfuntion on I. Then the funtion ϕ on (0,∞) de�ned by

ϕ(g(t)h(t)) = g(t)h̃(t) (t ∈ I)belongs to P+[0,∞), and for A,B with σ(A), σ(B) ⊂ I

A ≦ B ⇒
{
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2h(B)g(A)
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2 ) ≧ g(A)
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2 ,
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2 h(A)g(B)

1
2 ) ≦ g(B)
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2 h̃(A)g(B)

1
2 .Furthermore, if h̃ ∈ P+(I), then

A ≦ B ⇒
{
ϕ(g(A)

1
2 h(B)g(A)

1
2 ) ≧ ϕ(g(A)

1
2h(A)g(A)

1
2 ) = g(A)h̃(A),

ϕ(g(B)
1
2 h(A)g(B)

1
2 ) ≦ ϕ(g(B)

1
2h(B)g(B)

1
2 ) = g(B)h̃(B).Corollary 1.(Furuta) For p ≧ 1, r > 0
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p+r .Corollary 2. (Ando, F-F-K, U) Suppose p ≧ 1, r > 0 and 0 < α ≦ r
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Referenes:M. Uhiyama, A new majorization between funtions, polynomials, and operator inequalities, J.F.A(2006)221�244,M. Uhiyama, A new majorization between funtions, polynomials, and operator inequalities II, J. Math. So.Japan (2008) 291�310.Uhlig, Frank, Mathematis, Auburn University, Auburn, AL 36849, USA[CT, Wed. 10:35, Room 4℄Convex and Non-onvex Optimization Problems for the Field of Values of a MatrixWe introdue and study numerial algorithms that ompute the minimal and maximal distanes between
0 ∈ C and points in the �eld of values F (A) = {x∗Ax | x ∈ Cn , ‖x‖2 = 1} ⊂ C for a omplex matrix An,n.Finding the minimal distane from 0 ∈ C to F (A) is a onvex optimization problem if 0 /∈ F (A) and thusit has a unique solution, alled the Crawford number whose magnitude relates information on the stabilitymargin of the assoiated system. If 0 ∈ F (A), this is a non-onvex optimization problem and onsequentlythere an be multiple solutions or loal minima that are not so globally. Non-onvexity also holds for themaximal distane problem between points in F (A) and 0 ∈ C. This maximal distane is ommonly alled thenumerial radius numrad(A) for whih the inequality ρ(A) ≤ numrad(A) ≤ ‖A‖ is well established.Both ases an be solved e�iently numerially by using ideas from geometri omputing, eigenanalyses oflinear ombinations of the hermitean and skew-hermitean parts of A and the rotation method introdued byC. R. Johnson in the 1970s to ompute the boundary of the �eld of values.Vallejo, Ernesto, Instituto de Matemátias, Morelia, Méxio[CT, Mon. 12:25, Room 4℄Additivity obstrutions for integral matries and pyramidsThere are two important notions in Disrete Tomography: uniqueness and additivity. A �nite set S oflattie points in 3-dimensional eulidean spae is alled a set of uniqueness if it is uniquely determined bythe ardinalities of the intersetions of S with the planes parallel to the oordinate planes. The additivityondition is an auxiliary one and is su�ient for uniqueness but not neessary. Fisburn, Lagarias, Reedsand Shepp gave omplete lists of obstrutions for uniqueness (bad on�gurations) and for additivity (weaklybad on�gurations). They raised the following question: Is there an upper bound on the weights of the badon�gurations one needs to onsider to determine uniqueness of an arbitrary set S? A similar question anbe asked for additivity. For example, if one onsiders lattie sets in 2-dimensional eulidean spae, one anonsider uniqueness and additivity with respet to lines parallel to the oordinate axes. In this ase only badon�gurations of weight 2 are needed to determine uniqueness (this result goes bak to Ryser). In this talkque answer the question of Fishburn et al. and show that there is no upper bound on the weights of the badon�gurations one needs to onsider to determine uniqueness (as de�ned above) and additivity of �nite lattiesets in 3-dimensional spae.(with Miguel Santoyo)van den Driesshe, Pauline, University of Vitoria, Vitoria, Canada[MS7, Mon. 11:10, Room 2℄Bounds for the Perron root using max eigenvaluesUsing the tehniques of max algebra, a new proof of Al'pin's lower and upper bounds for the Perron root ofa nonnegative matrix is given. The bounds depend on the row sums of the matrix and its direted graph. If73



the matrix has zero diagonal entries, then these bounds may improve the lassial row sum bounds. This isillustrated by a generalized tournament matrix.(with Elsner, Ludwig)van der Holst, Hein, Eindhoven University of Tehnology, Eindhoven, The Netherlands[MS1, Thu. 11:00, Room 1℄Computing the minimum rank of partial 2-treesA 2-tree is reursively de�ned as follows: the omplete graph on three verties is a 2-tree, and if we have a
2-tree, a larger an be obtained by adding a new vertex adjaent to the endpoints of an edge in the 2-tree.A partial 2-tree is a subgraph of a 2-tree. The minimum rank of a graph G is the smallest rank over allsymmetri matries A = [ai,j ] with ai,j 6= 0, i 6= j if and only if ij is an edge of G. In this talk, I presentan e�ient algorithm to ompute the minimum rank of a partial 2-tree, and show how it an be extended toompute other minimum rank-type problems.Vander Meulen, Kevin, Redeemer University College, Anaster, Ontario, Canada[MS1, Fri. 15:55, Room 1℄ Sparse Inertially Arbitrary Sign PatternsThe inertia of a real matrix A is an ordered triple i(A) = (n1, n2, n3) where n1 is the number of eigenvalues of
A with positive real part, n2 is the number of eigenvalues of A with negative real part, and n3 is the numberof eigenvalues of A with zero real part. A sign pattern is a matrix whose entries are in {+,−, 0}. An order nsign pattern S is inertially arbitrary if for every ordered triple (n1, n2, n3) with n1 +n2 +n3 = n there is a realmatrix A suh that A has sign pattern S and i(A) = (n1, n2, n3). We desribe some tehniques in determininga pattern is inertially arbitrary. We present some irreduible inertially arbitrary patterns of order n with lessthan 2n entries.(with L. Vanderspek and M. Cavers)Van Dooren, Paul, Université atholique de Louvain, Louvain-la-Neuve, Belgium[Plenary, Thu. 9:10�10:05℄Some graph optimization problems in data miningGraph-theoreti ideas have beome very useful in uderstanding modern large-sale datamining tehniques.We show in this talk that ideas from optimization are also quite useful to better understand the numerialbehaviour of the orresponding algorithms. We illustrate this laim by looking at two spei� graph theoretiproblems and their appliation in datamining. The �rst problem is that of reputation systems where thereputation of objets and voters on the web are estimated; the seond problem is that of estimating thesimilarity of nodes of large graphs. These two problems are also illustrated using onrete appliations indatamining.Van Dooren, Paul, Université atholique de Louvain, Louvain-la-Neuve, Belgium[MS5, Thu. 11:00, Room 2℄H2 Approximation and Tangential Rational InterpolationWe onsider the problem of approximating an m×p rational transfer funtion H(s) of high degree by another
m × p rational transfer funtion Ĥ(s) of muh smaller degree. We derive the gradients of the H∈-norm ofthe approximation error and show how this an be solved via tangential interpolation. We then extend theseresults to the disrete-time ase, for both time-invariant and time-varying systems.(with K. Gallivan and P.A. Absil) 74



Vargas, Xaab Nop, ICYTDF, Méxio, Méxio[CT, Mon. 17:45, Room 2℄Students di�ulties with the onept of vetor spae from point of view of APOS TheoryVetor spae theory, being abstrat in nature and having an epistemologial status di�erent from mostmathematial topis taught at the undergraduate level, is a major soure of di�ulty for beginning linearalgebra students (Dorier, 1995a; Dorier, 1995b). The identi�ation of the nature of these di�ulties and theirassoiation with the way in whih students onstrut the onept of vetor spaes is of great importane on theway to the development and implementation of good instrutional strategies. APOS (Ation-Proess-Objet-Shema) Theory provides a researh tool that has been suessfully used in other areas of mathematis suh asabstrat algebra and alulus, for similar purposes. In a previous paper (Trigueros and Okta, 2005) a possiblegeneti deomposition for the onept of vetor spaes was reported, and ativities that were designed in suha way that students an make the neessary mental onstrutions required by the geneti deomposition of theonept were analyzed. Taking into aount this paper, an instrument to ondut a semi-strutured interviewwas designed using our theoretial framework, to be applied to a seleted group of students. The data fromthe interviews will be analyzed using the same framework. The interview onsisted of 17 questions about theonepts of vetor spae and subspae. Here we present two of these questions (numbered 1 and 2 in theinstrument), together with our a priori analysis of them and related student performane.Referenes:Dorier, J-L. (1995a): A general outline of the genesis of vetor spae theory. Historia Mathematia, 22(3),227-261.Dorier, J-L. (1995b): Meta level in the teahing of unifying and generalizing onepts in mathematis.Eduational Studies in Mathematis, 29(2), 175-197.Trigueros, M. and Okta, A. (2005): La Théorie APOS et l'Enseignement de l'Algebre Lineaire. Annalesde Didatique et de Sienes Cognitives, vol. 10, 157-176.Verde-Star, Luis, UAM Iztapalapa, Méxio DF, Méxio[CT, Fri. 12:15, Room 4℄ Linear algebrai approah to rational funtionsWe onsider some basi linear algebrai aspets of the algebra of rational funtions in one omplex variable. Wealso look at some duality properties and the Hopf algebra struture, and show that there are other importantalgebras that are isomorphi to the rational funtions.Vieira, Luis, Feup, Porto, Portugal[CT, Mon. 18:35, Room 2℄Eulidean Jordan algebras and inequalities on the parameters and on the spetra of a stronglyregular graphLet τ be a strongly (n, p; a, c) regular graph, suh that 0 < c < p < n− 1, A his matrix of adjaeny and let
Vn be the Eulidean real spae spanned by the powers Aj , j ∈ N0 where the salar produt •|• is de�ned by
x|y = trae(x · y). In this exposition one proves that Vn is an Eulidean Jordan algebra of rank 3 when oneintrodues in Vn the usual produt of matries. Working inside the Eulidean Jordan algebra Vn with the theonly omplete system of orthogonal idempotents assoiated to A one de�nes the generalized Krein parametersof the strongly (n, p; a, c) regular graph τ. Finally one presents neessary onditions over the parameters andthe spetra of the strongly (n, p; a, c) regular graph τ .
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Weaver, James, University of West Florida, Pensaola, FL 32514, USA[CT, Mon. 12:00, Room 4℄ Nonsingularity of Divisor TournamentsMatrix theoreti properties and examples of divisor tournaments are disussed. Emphasis is plaed on resultsand onjetures about the nonsingularity of the adjaeny matrix for a divisor tournament.De�nition 1 For an integer n > 2, the divisor tournament D(Tn) ( a direted graph on the verties 2, 3, . . . , n)is de�ned by: i is adjaent to j if i divides j, otherwise j is adjaent to i for 2 ≤ i < j ≤ n. No vertex isadjaent to itself.De�nitioni 2 The adjaeny matrix Tn of the direted graph D(Tn) with vertex set {2, 3, . . . , n} is the (n −
1)× (n − 1) matrix [tij ] de�ned by tij = 1 and tji = 0 if i | j, tij = 0 and tji = 1 if i 6 | j for 2 ≤ i < j ≤ n.
tii = 0 for i ∈ {2, 3, . . . , n}.(with Rohan Hemasinha and Je�rey L. Stuart)Wojiehowski, Piotr, University of Texas at El Paso, El Paso, USA[CT, Fri. 16:45, Room 3℄Orderings of matrix algebras and their appliationsThe full matrix algebra Mn(F) over a totally-ordered sub�eld F of the reals beomes a partially orderedalgebra by a partial order relation ≤ on the set Mn(F), if for any A,B,C ∈ Mn(F) from A ≤ B it followsthat:(1) A+ C ≤ B + C(2) if C ≥ 0 then AC ≤ BC and CA ≤ CB(3) if F ∋ α ≥ 0 then αA ≤ αB.Our interest is when the order ≤ is a lattie or at least is direted. Then we have a lattie-ordered algebra ofmatries or a diretly-ordered algebra of matries. Those onepts originate in 1956 in Birkho� and Piere in[1℄. The �rst example of a lattie-ordered algebra of matries is, of ourse, with the usual entry-wise ordering.In this ordering the identity matrix I is positive. In 1966 E. Weinberg proved in [6℄ that the positivity of
I fores a lattie-ordering to be (isomorphi to) the usual one in M2(F) and onjetured the same for all
n ≥ 2. The onjeture was positively solved in 2002 by J. Ma and P. Wojiehowski in [4℄. The proofinvolved a one-theoreti approah, by �rst establishing existene of a P -invariant one O in F

n, i.e. satisfyingthe ondition that for every matrix M ∈ P , M(O) ⊆ O, where P is the positive one of the ordering ≤(P = {A ∈ Mn(F) : A ≥ 0}.) With help of ompatness of a unit sphere in R
n and the Zorn's Lemma, weobtained all the desired properties of the one O that led us to the onlusion of the onjeture.The �rst part of the talk will brie�y outline the method.The above onsiderations allowed us to omprehensively desribe all lattie orders of Mn(F) (J. Ma andP. Wojiehowski [5℄): the algebra Mn(F) is lattie-ordered (within an isomorphism) if and only if

A ≥ 0⇔ A =

n∑

i,j=1

αijEijH
Twith

αij ≥ 0

i, j = 1, . . . , n, for some given H nonsingular with nonnegative entries and Eij having 1 in the ij entry andzeros elsewhere.As a �rst appliation, we will desribe all multipliative bases in the matrix algebra Mn(F) and provide theirenumeration for small n (C. De La Mora and P. Wojiehowski 2006 [2℄.) In a �nite-dimensional algebra over76



a �eld F, a basis B is alled a multipliative basis provided that B ∪ {0} forms a semigroup. Although thesebases (endowed with some additional algebrai properties) have been studied in the representation theory,they laked a omprehensive lassi�ation for matrix algebras. The �rst example of a multipliative basis of
Mn(F) should of ourse be {Eij , i, j = 1, . . . , n}. Every lattie order on Mn(F) orresponds to a nonsingular
n× n matrix H with nonnegative entries. It turns out that if the entries are either 0 or 1, the basi matriesresulting in the de�nition of the lattie order, i.e. the matries EijH

T form a multipliative basis, andonversely, every multipliative basis orresponds to a nonsingular zero-one matrix. After identi�ation of theisomorphi semigroups and also identi�ation of the matries that have just permuted rows and olumns, theabove orrespondene is one-to-one. The number of zero-one nonsingular matries, although laking a formulaso far, is known for a few small n values. This, together with the onjugay lass method from group theory,allowed us to alulate the number of nonequivalent multipliative bases up to dimension 5: 1, 2, 8, 61, 1153.Another appliation onerns ertain direted partial orders of matries that appear naturally in linear algebraand its appliations. It is related to the researh of matries preserving ones, established in the seventies,among others by R. Loewy and H. Shneider in [3℄. Besides the lattie orders (orresponding to the simpliialones), the best studied ones are the orders whose positive ones are the sets Π(O), of all matries preservinga regular (or full) one O in an n-dimensional Eulidean spae. It an be shown that O is essentially theonly Π(O)-invariant one (P. Wojiehowski [7℄.) Consequently, we obtain a haraterization of all maximaldireted partial orders on the n×n matrix algebra: a direted order is maximal if and only if its positive one
P satis�es P = Π(O) for some regular one O. The method used in the proof involves a onept of simpliialseparation, allowing a regular one to be separated from an outside point by means of a simpliial one.Some open questions related to the disussed topis will be raised during the talk.Referenes[1℄ G. Birkho� and R.S. Piere, Lattie-ordered rings, An. Aad. Brasil. Ci. 28 (1956), 41-69.[2℄ C. de La Mora and P. Wojiehowski Multipliative bases in matrix algebras, Linear Algebra and Applia-tions 419 (2006) 287-298.[3℄ R. Loewy and H. Shneider, Positive Operators on the n-dimensional Ie-Cream Cone, J. Math. Anal.Appl. 49 (1975)[4℄ J. Ma and P. Wojiehowski, A proof of Weinberg's onjeture on lattie-ordered matrix algebras, Pro.Amer. Math. So., 130(2002), no. 10, 2845-2851.[5℄ J. Ma and P. Wojiehowski, Lattie orders on matrix algebras, Algebra Univers. 47 (2002), 435-441.[6℄ E. C. Weinberg, On the sarity of lattie-ordered matrix rings, Pai� J. Math. 19 (1966), 561-571.[7℄ P. Wojiehowski Direted maximal partial orders of matries, Linear Algebra and Appliations 375(2003)45-49Wrobel, Iwona, Warsaw University of Tehnology and Polish Aademy of Sienes, Warsaw, Poland[CT, Thu. 10:35, Room 3℄The Gauss-Luas theorem and the numerial rangeThe Gauss-Luas theorem states that the onvex hull of the roots of a given omplex polynomial ontainsthe roots of its derivative. We will disuss possibilities of generalizing this result to the numerial range ofompanion matries. 77



Wu, Pei Yuan, National Chiao Tung University, Hsinhu, Taiwan[CT, Wed. 11:25, Room 4℄ Numerial ranges of nilpotent operatorsFor any operator A on a Hilbert spae, let w(A) and w0(A) denote its numerial radius and the distanefrom the origin to the boundary of its numerial range, respetively. We prove that if A is nilpotent withnilpoteny n, then w(A) is at most the produt of n− 1 and w0(A). When A attains its numerial radius, wealso determine a neessary and su�ient ondition for the equality to hold.(with Hwa-Long Gau)Zandieh, Mihelle, Arizona State University, Tempe, AZ, USA[MS4, Wed. 11:00, Room 2℄Design of a unit to teah eigenvetors and eigenvalues based on the instrutional designpriniples of Realisti Mathematis EduationAn understanding of eigen theory an provide students with powerful ways of analyzing and understandingsystemi-level problems in many areas of mathematis, engineering, and sienes.Most mathematis, engineering, and physis majors will enounter eigen theory at least twie in theirundergraduate areer: in linear algebra and in di�erential equations. Prior researh douments the manystruggles that students fae as they attempt to bridge their informal and intuitive ways of thinking withthe formalization of onepts in linear algebra (Dorier, Robert, Robinet and Rogalski, 2000; Carlson, 1993).Contemporary theories of learning and advanes in instrutional design theory, however, o�er fresh ideas foraddressing these well-doumented problems.The purpose of this paper is to report on one suh researh-based approah to improve the learning andteahing of linear algebra. In partiular, this paper will artiulate a hypothetial learning trajetory (HLT)for the development of eigen theory. This HLT will be grounded in analysis of data olleted from a semesterlong teahing experiment in linear algebra. As suh, the HLT we desribe will be both retrospetive andprospetive. It will be retrospetive in the sense that the HLT is informed not only by the literature, but alsoby our ongoing work with learners. It is prospetive in the sense that what we learned from working withstudents informs revisions and hanges to our HLT. This, in turn, will be the basis for our next lassroomteahing experiment.We de�ne a HLT to be a storyline about teahing and learning that ours over an extended period oftime (f, Simon, 1995). The storyline inludes four aspets, all of whih are re�exively related and revisable:(1) Learning goals about student reasoning, (2) a storyline of how students' mathematial learning experienewill evolve, (3) the role of the teaher in the storyline, and (4) a sequene of instrutional tasks that studentswill engage in. In our view, a HLT an be a useful tool for researhers and instrutional designers interestedin studying the evolution of student reasoning in lassroom settings.Our instrutional design e�orts are informed in large part by the theory of Realisti Mathematis Eduation(RME), with partiular emphasis on the heuristis of guided reinvention and emergent models (Gravemeijer,1999). The heuristi of guided reinvention suggests means by whih teahers and instrutional designersan promote students' ability to develop the intended mathematis for themselves. The emphasis of guidedreinvention is on the harater of the learning proess, rather than on inventing as suh. The heuristiof emergent models an be thought of in terms of a global transition in whih students and the teaherdevelop amodel-of their informal ativity whih gradually develops into amodel-for more formal mathematialreasoning. This global transition is a proess by whih a new mathematial reality emerges, grounded ininformal and situation-spei� ativity (Zandieh & Rasmussen, 2008).For example, in our teahing experiment we found that students ould essentially reinvent the determinantas a way of measuring the area of the image of the unit square under multipliation by an arbitrary 2x2 matrix.More importantly, and related to the notion of emergent models, the relationship between the olumn vetorsof a matrix and the determinant of this matrix has the potential to beome a powerful reasoning tool.78



Figure 1: A student shows how he found the area.Figure 1 gives one student's work on a task that asked them to �nd an expression for the area of the imageof the unit square when multiplied by the matrix (
a b
c d

).After �nding this area, students were then asked to make preditions about the area of the image of aunit square when multiplied by a 2x2 matrix whose olumn vetors were linearly dependent. This helpedstudents to develop a visual intuition for the relationship between the determinant of a matrix and the linear(in)dependene of the olumn vetors that make up the matrix. Nearly a month after this introdution todeterminants, one student, who we will all Karl, explained his thinking about how this idea onnets to eigentheory:When you look at the, uh, vetors, what does the determinant give us? It gives us the area between anytwo given vetors. And if, if our determinant equals zero, that basially means that the vetors that we'resolving for have no area in between. So therefore they lie along the same line.As he spoke, Karl held his hands in a v-shape, presumably emulating two vetors pointing out from theorigin. When he made referene to the determinant being zero, he made a motion of �attening his handstogether to indiate that the two vetors now lie along the same line.This type of reasoning has inspired us to reframe the development of the eigen unit. In partiular, weonjeture that it might be more intuitive for students to �rst think about the proess of �nding eigenvetors,as opposed to eigenvalues. This �eigenvetor �rst� approah goes along with the goal to �nd those vetorswhose image lies along the same line as the original vetor � and these vetors an be found by foring thedeterminant to be zero. Suh an eigenvetor �rst approah has also been doumented to be more oneptuallyaessible to student in di�erential equations (Rasmussen & Blumenfeld, 2007). Our full paper will detail thefour omponents (Learning goals about student reasoning, a storyline of how students' mathematial learningexperiene will evolve, the role of the teaher in the storyline, and a sequene of instrutional tasks) for ournew HLT for this innovative �eigenvetor �rst� approah.ReferenesCarlson, D. (1993). Teahing linear algebra: Must the fog always roll in? The College MathematialJournal, 24(1), 29-40.Dorier, J.L., Robers, A., Robinet, J., & Rogalski, M. (2000). The obstales of formalism in linear algebra.In J.L. Dorier (Ed.), On the teahing of linear algebra (pp. 85-124). Dordreht: Kluwer.Gravemeijer, K. (1999). How emergent models may foster the onstitution of formal mathematis. Math-ematial Thinking and Learning, 1, 155-177.Rasmussen, C., & Blumenfeld, H. (2007). Reinventing solutions to systems of linear di�erential equations:A ase of emergent models involving analyti expressions. Journal of Mathematial Behavior, 26, 195-210.79



Simon, M.A. (1995). Reonstrution mathematis pedagogy from a onstrutivist perspetive. Journal forResearh in Mathematis Eduation, 26, 114-145.Zandieh, M. & Rasmussen, C. (2008). A ase study of de�ning: reating a new mathematial reality.Manusript submitted for publiation.(with Rasmussen, C. and Larson, C.)Zimmermann, Karel, Faulty of Mathematis and Physis, Charles University, Prague, Czeh Republi[MS7, Mon. 12:00, Room 2℄Solving two-sided (max,plus)-linear equation systemsSystems of equations of the following form will be onsidered:
ai(x) = bi(x) i ∈ I, (21)where I = {1, . . . ,m}, J = {1, . . . ,m},

ai(x) = maxj∈J (aij + xj), bi(x) = maxj∈J (bij + xj) ∀i ∈ Iand aij , bij are given real numbers.The aim of the ontribution is to propose a polynomial method for solving system (21). Let M be the set ofall solutions of (21), let M(x) denote the set of solutions of system (21) satisfying the additional onstraint
x ≤ x, where x is a given �xed element of Rn. The proposed method either �nds the maximum element ofthe set M(x) (i.e. element x̂ ∈ M(x), for whih x ∈ M(x) implies x ≤ x̂), or �nds out that M(x) = ∅. Theresults are based on the following properties of system (21) (to simplify the notations we will assume in thesequel w.l.o.g. that ai(x) ≥ bi(x) ∀ i ∈ I and x 6∈M(x)):(i) M(x) = ∅ ⇒M = ∅.(ii) Let Ki = {k ∈ J ; aik ≤ bik} ∀i ∈ I. If for some i0 ∈ I the set Ki0 = ∅, then M(x) = ∅.(iii) Let βi(x) = maxk∈Ki

(bik + xk), Li(x) = {j ∈ J ; aij + xj > βi(x)}, ∀ i ∈ I. If ⋃
i∈I Li(x) = J , then

M(x) = ∅.(iv) Let Vj(x) = {i ∈ I; j ∈ Li(x)}, let x(1)
j = mini∈Vj(x)(βi(x) − aij) for all j ∈ J , for whih Vj(x) 6= ∅ and

x
(1)
j = xj otherwise. Let βi(x

(1)) < βi(x) for all i ∈ I. Then for at least one i ∈ I the value βi(x
(1)) is equalto at least one of the threshold values bij + xj < βi(x).The method suessively determines variables, whih have to be dereased if equalities in (21) should bereahed. If all variables have to be set in movement, no solution of (21) exists. If the set of unhanged vari-ables is nonempty, the maximum element of (21) is obtained. Using these properties a polynomial behaviorof the proposed method an be proved (in ase of rational or integer inputs). Possibilities of further general-izations and usage in optimization with onstraints (21), as well as appliations to synhronization problemswill be brie�y disussed.Zúñiga, Juan Carlos, Department of Mathematis, University of Calgary, Calgary, Alberta, Canada[MS6, Tue. 18:10, Room 2℄Matrix polynomials, rational matries and linear systems: A reviewSalar and matrix funtions whose entries are polynomial or rational funtions are essential tools of mathe-matis and its appliations, and partiularly of systems theory. It an be argued that two shools of thoughthave emerged, in applied linear algebra and in systems theory, whih are onerned with the same problems,but have developed independent literatures. In this note, we review basi ideas whih are ommon to bothshools and, thereby, larify onnetions and failitate ommuniation between them. Our interest fouses80



partiularly on the study of eigenvalues, poles, and zeros of polynomial and rational matrix funtions asmathematial models of multivariable linear di�erential (dynamial) systems. It is not our intention to give adeep analysis on di�erential (dynamial) systems, we fous only in the di�erent ways that matrix polynomialsand rational matries are used to model linear systems. We also argue on the importane of the struturalproperties of these matrix funtions when desribing the dynamis of the modeled system. Then we presentdi�erent methods to obtain these strutural properties, and their relations with the methods used in appliedlinear algebra and matrix theory, in partiular, anonial forms and linearizations. Finally a brief disussionon numerial methods to obtain strutural properties of matrix funtions is presented.(with Lanaster, Peter)
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