Nonsingularity of Divisor Tournaments

Rohan Hemasinha Dept. of Math/Stat, Univ. of West Florida, Pensacola, FL 32514, USA rhemasin@uwf.edu Jeffrey L. Stuart Dept. of Mathematics, Pacific Lutheran Univ. Tacoma, WA 98447, USA jeffrey.stuart@plu.edu James R. Weaver (speaker) Dept. of Math/Stat, Univ. of West Florida, Pensacola, FL 32514, USA jweaver@uwf.edu

Abstract

Matrix theoretic properties and examples of divisor tournaments are discussed. Emphasis is placed on results and conjectures about the nonsingularity of the adjacency matrix for a divisor tournament.

Definition 1 For an integer n > 2, the divisor tournament $D(T_n)$ (a directed graph on the vertices $2, 3, \dots, n$) is defined by: i is adjacent to j if i divides j, otherwise j is adjacent to i for $2 \le i < j \le n$. No vertex is adjacent to itself.

Definition 2 The adjacency matrix T_n of the directed graph $D(T_n)$ with vertex set $\{2, 3, \dots, n\}$ is the $(n-1) \times (n-1)$ matrix $[t_{ij}]$ defined by $t_{ij} = 1$ and $t_{ji} = 0$ if $i \mid j$, $t_{ij} = 0$ and $t_{ji} = 1$ if $i \nmid j$ for $2 \le i < j \le n$. $t_{ii} = 0$ for $i \in \{2, 3, \dots, n\}$.