Controllability of Matrices with Prescribed Blocks

Glória Cravo

Departamento de Matemática e Engenharias, Universidade da Madeira Portugal Email address: gcravo@uma.pt

Abstract

Let F be a field and let n, p_1, \ldots, p_k be positive integers such that $n = p_1 + \cdots + p_k$. Let

$$(C_1, C_2) = \left(\begin{bmatrix} C_{1,1} & \cdots & C_{1,k-1} \\ \vdots & & \vdots \\ C_{k-1,1} & \cdots & C_{k-1,k-1} \end{bmatrix}, \begin{bmatrix} C_{1,k} \\ \vdots \\ C_{k-1,k} \end{bmatrix} \right)$$

where the blocks $C_{i,j}$ are of type $p_i \times p_j, i \in \{1, \ldots, k-1\}, j \in \{1, \ldots, k\}$. We study the possibility of (C_1, C_2) being completely controllable, when some of its blocks are fixed and the others vary.

Our main results analyse the following cases:

(i) All the blocks $C_{i,j}$ are of the same size;

(ii) The blocks $C_{i,j}$ are not necessarily of the same size and k = 3.

We also describe the possible characteristic polynomial of a matrix of the form

$$C = \left[\begin{array}{cccc} C_{1,1} & \cdots & C_{1,k} \\ \vdots & & \vdots \\ C_{k,1} & \cdots & C_{k,k} \end{array} \right]$$

when some of its blocks are prescribed and the others are free.