Spectral Manifolds

By A. Daniilidis, J. Malick, A. Lewis, H.S. Sendov*.
It is well known that the set of all $n \times n$ symmetric matrices of rank k is a smooth manifold. This set can be described as those symmetric matrices whose ordered vector of eigenvalues has exactly $n-k$ zeros. The set of all vectors in \mathbb{R}^{n} with exactly $n-k$ zero entries is itself an analytic manifold. In this work, we characterize the manifolds M in \mathbb{R}^{n} with the property that the set of all $n \times n$ symmetric matrices whose ordered vector of eigenvalues belongs to M is a manifold. In particular, we show that if M is a C^{2}, C^{∞}, or C^{ω} manifold then so is the corresponding matrix set. We give a formula for the dimension of the matrix manifold in terms of the dimension of M.

