On the problem of diagonalizability of matrices over a principal ideal domain

By Volodymyr Prokip.
Let R - be a principal ideal domain with the unit element $e \neq 0$ and $U(R)$ the set of divisors of unit element e. Further, let R_{n} - the ring of $(n \times n)$ matrices over $R ; I_{k}$ - the identity $k \times k$ matrix and O the zero $n \times n$ matrix. In this report we present conditions of diagonalizability of a matrix $A \in R_{n}$, i.e. when for A there exists a matrix $T \in G L(n, R)$ such that $T A T^{-1}$ - a diagonal matrix.

Theorem. Let $A \in R_{n}$ and

$$
\operatorname{det}(I x-A)=\left(x-\alpha_{1}\right)^{k_{1}}\left(x-\alpha_{2}\right)^{k_{2}} \cdots\left(x-\alpha_{r}\right)^{k_{r}}
$$

where $\alpha_{i} \in R$, and $\alpha_{i}-\alpha_{j} \in U(R)$ for all $i \neq j$. If $m(x)=\left(x-\alpha_{1}\right)(x-$ $\left.\alpha_{2}\right) \cdots\left(x-\alpha_{r}\right)$ - the minimal polynomial of the matrix A, i.e. $m(A)=O$, then for the matrix A there exists a matrix $T \in G L(n, R)$ such that

$$
T A T^{-1}=\operatorname{diag}\left(\alpha_{1} I_{k_{1}}, \alpha_{2} I_{k_{2}}, \ldots, \alpha_{r} I_{k_{r}}\right)
$$

