Numerical methods for two-parameter eigenvalue problems

By Bor Plestenjak. We consider the two-parameter eigenvalue problem [1]

$$
\begin{align*}
& A_{1} x_{1}=\lambda B_{1} x_{1}+\mu C_{1} x_{1}, \tag{1}\\
& A_{2} x_{2}=\lambda B_{2} x_{2}+\mu C_{2} x_{2},
\end{align*}
$$

where A_{i}, B_{i}, and C_{i} are given $n_{i} \times n_{i}$ matrices over $\mathbb{C}, \lambda, \mu \in \mathbb{C}$, and $x_{i} \in \mathbb{C}^{n_{i}}$ for $i=1,2$. A pair (λ, μ) is an eigenvalue if it satisfies (1) for nonzero vectors x_{1}, x_{2}. The tensor product $x_{1} \otimes x_{2}$ is then the corresponding eigenvector. On the tensor product space $S:=\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}}$ of the dimension $N:=n_{1} n_{2}$ we can define operator determinants

$$
\begin{aligned}
& \Delta_{0}=B_{1} \otimes C_{2}-C_{1} \otimes B_{2}, \\
& \Delta_{1}=A_{1} \otimes C_{2}-C_{1} \otimes A_{2}, \\
& \Delta_{2}=B_{1} \otimes A_{2}-A_{1} \otimes B_{2} .
\end{aligned}
$$

The two-parameter problem (1) is nonsingular if its operator determinant Δ_{0} is invertible. In this case $\Delta_{0}^{-1} \Delta_{1}$ and $\Delta_{0}^{-1} \Delta_{2}$ commute and problem (1) is equivalent to the associated problem

$$
\begin{align*}
& \Delta_{1} z=\lambda \Delta_{0} z, \tag{2}\\
& \Delta_{2} z=\mu \Delta_{0} z
\end{align*}
$$

for decomposable tensors $z \in S, z=x_{1} \otimes x_{2}$. Some numerical methods and a basic theory of the two-parameter eigenvalue problems will be presented. A possible approach is to solve the associated couple of generalized eigenproblems (2), but this is only feasible for problems of low dimension because the size of the matrices of (2) is $N \times N$. For larger problems, if we are interested in a part of the eigenvalues close to a given target, the Jacobi-Davidson method [3, 4, 5] gives very good results. Several applications lead to singular two-parameter eigenvalue problems where Δ_{0} is singular. Two such examples are model updating [2] and the quadratic two-parameter eigenvalue problem

$$
\begin{align*}
\left(S_{00}+\lambda S_{10}+\mu S_{01}+\lambda^{2} S_{20}+\lambda \mu S_{11}+\mu^{2} S_{02}\right) x & =0 \tag{3}\\
\left(T_{00}+\lambda T_{10}+\mu T_{01}+\lambda^{2} T_{20}+\lambda \mu T_{11}+\mu^{2} T_{02}\right) y & =0 .
\end{align*}
$$

We can linearize (3) as a singular two-parameter eigenvalue problem, a possible linearization is

$$
\begin{aligned}
& \left(\left[\begin{array}{ccc}
S_{00} & S_{10} & S_{01} \\
0 & -I & 0 \\
0 & 0 & -I
\end{array}\right]+\lambda\left[\begin{array}{ccc}
0 & S_{20} & \frac{1}{2} S_{11} \\
I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\mu\left[\begin{array}{ccc}
0 & \frac{1}{2} S_{11} & S_{02} \\
0 & 0 & 0 \\
I & 0 & 0
\end{array}\right]\right) \widetilde{x}=0 \\
& \left(\left[\begin{array}{ccc}
T_{00} & T_{10} & T_{01} \\
0 & -I & 0 \\
0 & 0 & -I
\end{array}\right]+\lambda\left[\begin{array}{ccc}
0 & T_{20} & \frac{1}{2} T_{11} \\
I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\mu\left[\begin{array}{ccc}
0 & \frac{1}{2} T_{11} & T_{02} \\
0 & 0 & 0 \\
I & 0 & 0
\end{array}\right]\right) \widetilde{y}=0
\end{aligned}
$$

where $\widetilde{x}=\left[\begin{array}{c}x \\ \lambda x \\ \mu x\end{array}\right]$ and $\widetilde{y}=\left[\begin{array}{c}y \\ \lambda y \\ \mu y\end{array}\right]$. Some theoretical results and numerical methods for singular two-parameter eigenvalue problems will be presented.

References

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York, 1972.
[2] N. Cottin, Dynamic model updating - a multiparameter eigenvalue problem, Mech. Syst. Signal Pr., 15 (2001), pp. 649-665.
[3] M. E. Hochstenbach and B. Plestenjak, A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392-410.
[4] M. E. Hochstenbach, T. Košir, and B. Plestenjak, A JacobiDavidson type method for the nonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477-497.
[5] M. E. Hochstenbach and B. Plestenjak, Harmonic RayleighRitz extraction for the multiparameter eigenvalue problem, to appear in ETNA.

