1 Dilation of numerical ranges of normal matrices

By Maria Adam and John Maroulas.

Let A be an $n \times n$ normal matrix, whose the numerical range NR[A] is a k-polygon, and let $v \in \mathbb{C}^n$, be a unit vector. If for a unit vector $v \in \mathbb{C}^n$, the point v^*Av is interior point of NR[A] and P is an $n \times (k-1)$ matrix, such that $P^*P = I_{k-1}$ and $v \perp ImP$, then NR[A] is circumscribed to NR[C], where $C = P^*AP$. In this paper, we investigate the converse way, showing how we obtain NR[A], from a (k-1)-polygon, such that the boundary of NR[C] shares the same tangential points with the sides of both polygons.