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Inspired by a large-scale sparse discrete-time Riccati equation which arises
in a spectral factorization problem the efficient numerical solution of such
Riccati equations is studied in this work. Spectral factorization is a crucial
step in the solution of linear quadratic estimation and control problems. A
variety of methods has been developed over the years for the computation
of canonical spectral factors for processes with rational spectral densities,
see, e.g., the survey [6]. One approach involves the spectral factorization
via a discrete-time Riccati equation. Whenever possible, we consider the
generalized discrete–time algebraic Riccati equation

0 = R(X) = CT QC + AT XA−ET XE (1)

−(AT XB + CT S)(R + BT XB)−1(BT XA + STC),

where A, E ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, Q ∈ R

p×p, R ∈ R
m×m, and S ∈

R
p×m. Furthermore, Q and R are assumed to be symmetric and A and E are

large and spare. For the particular application above, we have
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The function R(X) is a rational matrix function, R(X) = 0 defines a sys-
tem of nonlinear equations. Newton’s method for the numerical solution of
DAREs can be formulated as follows

for k = 0, 1, 2, . . .

1. Kk ← K(Xk) = (R + BT XkB)−1(BT XkA + ST C).
2. Ak ← A− BKk.
3. Rk ←R(Xk).
4. Solve for Nk in the Stein equation

AT
k NkAk − ET NkE = −Rk. (2)

5. Xk+1 ← Xk + Nk.

end for The computational cost for this algorithm mainly depends
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upon the cost for the numerical solution of the Stein equation (2). This
can be done using the Bartels–Stewart algorithm [1] or an extension to the
case E 6= I [2, 3, 4]. The Bartels-Stewart algorithm is the standard direct
method for the solution of Stein equations of small to moderate size. This
method requires the computation of a Schur decomposition, and thus is not
appropriate for large scale problems. The cost for the solution of the Stein
equation is≈ 73n3 flops. Iterative schemes have been developed including the
Smith method [7], the sign-function method [5], and the alternating direction
implicit (ADI) iteration method [8]. Unfortunately, all of these methods
compute the solution in dense form and hence require O(n2) storage. In case
the solution to the Stein equation has low numerical rank (i.e., the eigenvalues
decay rapidly) one can take advantage of this low rank structure to obtain
approximate solutions in low rank factored form. If the effective rank is
r ≪ n, then the storage is reduced from O(n2) to O(nr). This approach will
be discussed here in detail.
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