1 On the permuted max-algebraic eigenvector problem

By Peter Butkovic.

Let $a \oplus b = \max(a, b)$, $a \otimes b = a + b$ for $a, b \in \mathbb{R} := \mathbb{R} \cup \{-\infty\}$ and extend these operations to matrices and vectors as in conventional linear algebra. The following max-algebraic eigenvector problem has been intensively studied in the past: Given $A \in \mathbb{R}^{n \times n}$, find all $x \in \mathbb{R}^n$, $x \neq (-\infty, ..., -\infty)^T$ (eigenvectors) such that $A \otimes x = \lambda \otimes x$ for some $\lambda \in \mathbb{R}$. In our talk we deal with the permuted eigenvector problem: Given $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, is it possible to permute the components of x so that the arising vector x'is a (max-algebraic) eigenvector of A? This problem can be proved to be NP-complete using a polynomial transformation from BANDWIDTH. As a by-product the following permuted max-linear system problem can also be shown NP -complete: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, is it possible to permute the components of b so that for the arising vector b' the system $A \otimes x = b'$ has a solution? Both problems can be solved in polynomial time when ndoes not exceed 3.