1 On the permuted max-algebraic eigenvector problem

By Peter Butkovic.
Let $a \oplus b=\max (a, b), a \otimes b=a+b$ for $a, b \in \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\}$ and extend these operations to matrices and vectors as in conventional linear algebra. The following max-algebraic eigenvector problem has been intensively studied in the past: Given $A \in \overline{\mathbb{R}}^{n \times n}$, find all $x \in \overline{\mathbb{R}}^{n}, x \neq(-\infty, \ldots,-\infty)^{T}($ eigenvectors) such that $A \otimes x=\lambda \otimes x$ for some $\lambda \in \overline{\mathbb{R}}$. In our talk we deal with the permuted eigenvector problem: Given $A \in \overline{\mathbb{R}}^{n \times n}$ and $x \in \overline{\mathbb{R}}^{n}$, is it possible to permute the components of x so that the arising vector x^{\prime} is a (max-algebraic) eigenvector of A ? This problem can be proved to be $N P$-complete using a polynomial transformation from BANDWIDTH. As a by-product the following permuted max-linear system problem can also be shown $N P$-complete: Given $A \in \overline{\mathbb{R}}^{m \times n}$ and $b \in \overline{\mathbb{R}}^{m}$, is it possible to permute the components of b so that for the arising vector b^{\prime} the system $A \otimes x=b^{\prime}$ has a solution? Both problems can be solved in polynomial time when n does not exceed 3 .

